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Adaptive Anisotropy Optimization Method for the Radial Point
Interpolation Method in Lossy Media

Hichem Naamen1, *, Ajmi B. H. Hamouda2, and Taoufik Aguili1

Abstract—In this paper, we present a new numerical anisotropy optimization method for the three-
dimensional (3D) radial point interpolation method (RPIM) in lossy media. In classical optimization
algorithms, the parameters of the artificial anisotropy or the scaling factors are usually evaluated
along the selected axes. Instead, once the analytical expressions of these adaptive factors have been
determined, they are assigned at each node through their shape functions. By adaptive factor, we mean
that its value varies in such a way to cancel the discrepancy between numerical and exact wavenumbers
at each node. Doing such optimization at each node is indeed possible during the calculation of these
parameters by the RPIM dispersion relation. Therefore, the numerical anisotropy is no longer optimized
by averaging over the entire Cartesian grid but rather over each node direction. The RPIM numerical
anisotropy adaptive optimization method (AOM) in lossy media is presented, and the theoretical
adaptive factors are given as functions of node positions. Our results show that optimizing with the
AOM considerably reduces the numerical errors of the dispersion and anisotropy. The proposed AOM
scheme is applied to a 3D rectangular cavity in order to test its validity and evaluate the accuracy of
the numerical results of our approach.

1. INTRODUCTION

Mesh-based methods, such as the finite element method (FEM), method of moments (MoM), and finite
difference time domain method (FDTD), solve Maxwell’s equations by segmenting the computational
domain into connected sub-domains of simple shapes and discrete time steps to establish the system of
algebraic equations [1]. In spite of the vast performance from these methods, the meshes/grids needed
to generate polygons for complex geometries restrict their applications, influence precision, and increase
computational time due to continuity relations connecting these meshes [2].

Alternatively, meshless methods do not require topological relations between the nodes or continuity
equations [3]. They lead to multiscale node distributions [4] and adaptive refinement to increase
simulation accuracy [5]. Among them are the smoothed particle electromagnetic method (SPEM) [6],
partition of unity method (PUM) [7], and meshless local Petrov-Galerkin method (MLPGM) [8]. These
methods have been improved to overcome the limitations of mesh methods and solve complex problems.

In the absence of analytical solutions of Maxwell’s equations for complex geometries, and since
numerical methods cannot incorporate the actual continuum in space and time, the discretization process
is an alternative solution for modelling electromagnetic phenomena. However, the inevitable drawback
is that such discretization generates numerical dispersion which induces distortions in the waveforms.
Moreover, the phase error is anisotropic since it depends on the direction of the waveforms, which are
slightly cubical [9] rather than spherical. In addition, numerical dispersion causes cumulative phase
error leading to resonance mislocations in the frequency domain.
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To rectify the problem of numerical dispersion, several techniques have been proposed within the
framework of meshing methods [10, 11]. Artificial anisotropy was implemented to reduce dispersion
error [9]. Cole has introduced the non-standard finite-difference (NSFD) formulation [12] and Forgy and
Chew created an algorithm based on the linear superposition of two lattices [13]. It should be pointed out
that the implementation of these schemes is not compatible with the standard FDTD algorithm except
for the NSFDTD. In summary, the numerical anisotropy optimization is limited by the finite-difference
scheme to approximate the curl.

On the other hand, the RPIM algorithm numerically processes the shape functions to handle
topological node connectivity information, and the unknown fields are expanded over these shape
functions. Thus, for the curls in Maxwell’s equations for the corresponding EM fields are replaced by
their expanded shape-function derivatives. The RPIM algorithm is an accurate alternative to estimate
the spatial curl in Maxwell’s equations by avoiding the finite-difference scheme, the pedestal of the
FDTD discretization process.

In this paper, a simple adaptive technique which significantly reduces both of the dispersion error
and the numerical anisotropy for 3D-RPIM in lossy media is proposed. Our approach is based on an
extended procedure with a new formulation of the algorithm, described as follows: 1) to adjust the
numerical dispersion for the exact known value, the scaling factors are calculated analytically from the
RPIM dispersion relation; 2) the scaling factors are discretized and expressed as a function of (i, j, k)
node position; 3) the E/H shape functions are computed with the associated discretized scaling factors
at each node position in accordance with Maxwell’s equations; 4) a diagonal matrix containing the
scaling factors according to the transition matrix is computed. In Section 2, RPIM Maxwell’s equations
in lossy media are given. In Section 3, the formulation of the AOM is detailed. In Sections 4 and 5,
numerical and experimental results are presented to confirm and validate the proposed AOM accuracy.

2. RPIM MAXWELL’S EQUATIONS IN LOSSY MEDIA

To implement the meshless RPIM technique in three dimensions, one must define two complementary
sets of electric field nodes (E-nodes) and magnetic field nodes (H-nodes). However, in contrast to the
FDTD method, all three components of the electric field are placed at the same E-node. The same
applies to the magnetic field. The coupling aspect of electromagnetic field components requires that
each E-node should be surrounded by H-nodes and vice-versa [14].

In this paper, E- andH-nodes are spread similarly to the point-matched time-domain finite-element
method [15]. Hence, each (i, j, k) E-node is surrounded by eight H-nodes, four at each of the (k− 1/2)
and (k+1/2) planes. Thus, we have selected eight surrounding H-nodes in the E-node support domain
and vice versa [16]. The ideal distribution of nodes is corresponding to a large number of nodes per
support domain, but such a large number will increase the computational cost through the corresponding
shape functions. For 3D problems, the minimal number of nodes per support domain is eight [Fig. 6]
while there are four for 2D problems. As opposed to the FDTD, RPIM grids match the edge of the curve
and avoid the discontinuity problem encountered in the FDTD (at the staircase). Once the dual node
distributions have been generated in the 3D domain, the E/H shape functions with their derivatives are
numerically computed. Thus, eight H-node fields belonging to the E-node support domain will update
the E-node field and vice versa [16]. The topological node connectivity is handled by processing their
shape functions with minimal loss of geometric information.

A sourceless region with linear, isotropic, non-dispersive, and lossy media is considered. In
Cartesian coordinates, the time-dependent 3D Maxwell’s curl equations in differential form write:

∇∧ H⃗ = M ε
∂E⃗

∂t
+MσE⃗, (1)

∇∧ E⃗ = −Mµ
∂H⃗

∂t
−Mσ∗H⃗. (2)

Here M ε = diag{εx, εy, εz}, Mµ = diag{µx, µy, µz}, Mσ = diag{σx, σy, σz} and Mσ∗ = diag{σ∗x, σ∗y , σ∗z}
are diagonal matrices with positive real elements composed of the permittivity ε, the permeability µ,
the electric conductivity σ, and the equivalent magnetic loss σ∗.
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A second-order centered difference may approximate [∂E⃗/∂t]n+1/2 and [∂H⃗/∂t]n by (E⃗n+1−E⃗n)/∆t

and (H⃗n+1/2− H⃗n−1/2)/∆t, respectively, i.e., E⃗n+1/2 and H⃗n are estimated with second-order accuracy
using the averages of the electric field at time levels n and n+ 1, and the magnetic field at time levels

n−1/2 and n+1/2, respectively [17]. After several rearrangements, E⃗n+1 and H⃗n+1/2 at the E/H-node

of interest X
E/H
i lead to the following equations:

E⃗n+1(XE
i ) =

[
2M ε +∆tMσ

]−1 [
2M ε −∆tMσ

]
E⃗n(XE

i )

+2∆t
[
2M ε +∆tMσ

]−1 {
∇∧ H⃗n+1/2

}
(XE

i ), (3)

H⃗n+1/2(XH
i ) =

[
2Mµ +∆tMσ∗

]−1 [
2Mµ −∆tMσ∗

]
H⃗n−1/2(XH

i )

−2∆t
[
2Mµ +∆tMσ∗

]−1 {
∇∧ E⃗n

}
(XH

i ). (4)

where H⃗n+1/2 and E⃗n components are interpolated over the H/E-shape functions inside their associate
local support domains [18], leading to:{

∇∧ E⃗n
}
(XH

i ) =

j=N∑
j=1

{
∇∧ ϕEj

}
(XH

i )E⃗n
j = CEE⃗

n, (5a)

{
∇∧ H⃗n+1/2

}
(XE

i ) =

j=N∑
j=1

{
∇∧ ϕHj

}
(XE

i )H⃗
n+1/2
j = CHH⃗

n+1/2, (5b)

with

CE =


0
E

−ϕ
E

z ϕ
E

y

ϕ
E

z 0
E

−ϕ
E

x

−ϕ
E

y ϕ
E

x 0
E

 , CH =


0
H

−ϕ
H

z ϕ
H

y

ϕ
H

z 0
H

−ϕ
H

x

−ϕ
H

y ϕ
H

x 0
H

 , (6)

the superscript n is a temporal index; 0
E/H

is the null matrix of appropriate dimensions; CE and CH

are block matrices computed during the RPIM algorithm implementation and thoroughly described

in [16]. The elements ϕ
E/H

ξ of CE/CH are matrices collecting spatial E/H shape function derivatives

for ξ = x, y, or z, for spread E/H nodes, evaluated at different X
H/E
i nodes, respectively, and defined

as: [
ϕ
E/H
ξ

]
i,j

= ∂ξϕ
E/H
j (X

H/E
i ). (7)

After some algebraic manipulations, we cast Equations (3) and (4) into more compact vector-matrix
form as:

E⃗n+1 = A1E⃗
n +A2CH · H⃗n+1/2, (8)

H⃗n+1/2 = B1H⃗
n−1/2 −B2CE · E⃗n, (9)

A1, A2, B1, and B2 are constant diagonal matrices, expressed as:

A1 =
[
2M ε +∆tMσ

]−1 [
2M ε −∆tMσ

]
, B1 =

[
2Mµ +∆tMσ∗

]−1 [
2Mµ −∆tMσ∗

]
, (10a)

A2 = 2∆t
[
2M ε +∆tMσ

]−1
, B2 = 2∆t

[
2Mµ +∆tMσ∗

]−1
. (10b)

Substituting Equation (9) into (8) yields:

E⃗n+1 =
[
A1 −A2B2CHCE

]
E⃗n +A2B1CHH⃗

n−1/2, (11)

H⃗n+1/2 = −B2CE · E⃗n +B1H⃗
n−1/2, (12)

ψ⃗n+1 = G · ψ⃗n, (13)
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Equations (11) and (12) are combined into Equation (13), in matrix form, where ψ⃗n = [E⃗n, H⃗n−1/2]T =

[E⃗n
x , E⃗

n
y , E⃗

n
z , H⃗

n−1/2
x , H⃗

n−1/2
y , H⃗

n−1/2
z ]T and G is the transition matrix defined by:

G
σ ̸=0, σ∗ ̸=0

=

(
A1 −A2B2CHCE A2B1CH

−B2CE B1

)
, G

σ ̸=0, σ∗=0
=

A1 −∆tA2M
−1

µ CHCE A2CH

−∆tM
−1

µ CE I3

 , (14)

where In is the n× n identity matrix.

3. FORMULATION OF THE PROPOSED AOM

3.1. Scaling Factors versus Propagation Angle

The 3D-RPIM dispersion relation for a lossy media given in [18] writes:

sin2
(
ω∆t

2

)
− σσ∗ (∆t)2

4εµ
cos2

(
ω∆t

2

)
− j

(
σ∆t

4ε
+
σ∗∆t

4µ

)
sin (ω∆t) = S2Ψ(knum) , (15)

here, the Courant factor is S = c∆t/∆, with c = 1/
√
εµ the speed of light in the modeled media,

∆ = ∆x = ∆y = ∆z = λ0/Ns the uniform spatial resolution, λ0 the exact wavelength in the lossy
material, Ns the spatial sampling rate, ω the angular frequency, and ∆t the time step size.

Wx = sin

(
kx∆x

2

)
cos

(
ky∆y

2

)
cos

(
kz∆z

2

)
, Wy=cos

(
kx∆x

2

)
sin

(
ky∆y

2

)
cos

(
kz∆z

2

)
, (16a)

Wz = cos

(
kx∆x

2

)
cos

(
ky∆y

2

)
sin

(
kz∆z

2

)
, Ψ(k)=W 2

x +W 2
y +W 2

z , (16b)

where kx = k sin(θ) cos(ϕ), ky = k sin(θ) sin(ϕ), and kz = k cos(θ) are the three wavenumbers along the
x, y, and z directions, respectively. Here k is the numerical wavenumber, and (ϕ, θ) are the azimuthal
and polar angles in a spherical coordinate system, respectively. ∆x, ∆y, and ∆z are the uniform
distances between neighboring E/H-nodes in the corresponding directions.

As shown in [18], the numerical resolution of this dispersion relation is a set of complex numerical
wavenumbers which are quite far from the exact values [19], which causes numerical dispersion
and anisotropy. Under this form, Equation (15) cannot be verified for the exact wavenumber and
consequently have to be scaled by (sc1, sc2) [20], and these scaling factors are inserted into the dispersion
relation to adjust the numerical factor to the exact value. The scaling factors act on (ε, µ) and (σ, σ∗),
respectively. Thus, Equation (15) should be written as:

sin2
(
ω∆t

2

)
−σσ

∗ · sc22 (∆t)
2

4εµ · sc21
cos2

(
ω∆t

2

)
−j
(
σ · sc2∆t
4ε · sc1

+
σ∗ · sc2∆t
4µ · sc1

)
sin (ω∆t)=

S2

sc21
Ψ(kexact) . (17)

Equation (17) can be decomposed into two real equations by balancing the real and imaginary parts
of both side of Equation (17), as all parameters in Equation (17) are real except kexact. Equating real
parts of two sides gives:

sin2
(
ω∆t

2

)
· sc21 −

σσ∗∆t2

4εµ
cos2

(
ω∆t

2

)
· sc22 = S2 · Re[Ψ (kexact)]. (18)

Equating imaginary parts of two sides gives:

sc1 · sc2 =
−4εµS2 · Im [Ψ (kexact)]

(µσ + εσ∗) ·∆t · sin (ω∆t)
. (19)

The equations of the obtained nonlinear system can then be analytically solved for the scaling factors
after some algebraic calculations and are expressed as:

sc1 =
S
√

Re [Ψ (kexact)]√
2 sin

(
ω∆t
2

)
√√√√1 +

√
1 +

4εµσσ∗Im2 [Ψ (kexact)]

(µσ + εσ∗)2Re2 [Ψ (kexact)]
,

sc2 =

(
−4εµS2Im [Ψ (kexact)]

(µσ + εσ∗)∆t sin (ω∆t)

)/
sc1. (20)
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For electrically lossy media (σ∗ = 0), the scaling factors have the following expressions:

sc1 =
S

sin
(
ω∆t
2

) √Re [Ψ (kexact)], sc2 =
−2ε tan

(
ω∆t
2

)
σ∆t

(
Im [Ψ (kexact)]

Re [Ψ (kexact)]

)
sc1. (21)

In the case of lossless media, we have sc2 = 0. It must be noted that these scaling factors are functions
of ϕ and θ and sweep the continuous space. Such a behavior cannot be handled numerically, unless the
scaling factors are discretized and implemented by the AOM algorithm.

3.2. Scaling Factors versus Discrete Directions

The dispersion optimization techniques mentioned above use constant scaling factors, which are obtained
by averaging over certain selected directions. The scaling factors as functions of azimuth and polar
angles in a spherical coordinate system have to be expressed in Cartesian coordinates. This allows a
dispersion optimization at every node of the grid. Instead of optimizing numerical dispersion along
certain directions, it will be carried out for all grid directions that pass through E/H nodes. Hence, we
will have to compute the shape functions taking into account these discretized and affected adaptive
factors at each E/H node. The azimuthal and polar angles ϕ and θ in Cartesian coordinates can be
written:

ϕ[i, j] = tan−1 (j∆y/i∆x) , θ[i, j, k] = cos−1
(
k∆z

/√
(i∆x)2 + (j∆y)2 + (k∆z)2

)
. (22)

Let us define the dimensionless parameters as follows:

R = ∆y/∆x, Z = ∆z/∆x. (23)

After a simple calculation, we end up with:

ϕ[i, j] = tan−1 (Rj/i) , θ[i, j, k] = cos−1
(
Zk
/√

i2 + (Rj)2 + (Zk)2
)
, (24)

A1[i, j, k] =
S

sin
(
ω∆t
2

)√Re[Ψ[i, j, k]], A2[i, j, k] =
−2ε tan

(
ω∆t
2

)
σ∆t

(
Im[Ψ[i, j, k]]

Re[Ψ[i, j, k]]

)
· sc1[i, j, k].(25)

At this level, the discretized adaptive factors depend on the E/H-node positions. Hence, associated
permittivities, permeabilities, and conductivities values are given by A1[i, j, k] × ε, A1[i, j, k] × µ, and
A2 × σ respectively, at (i, j, k) node positions.

3.3. Implementation into the RPIM Algorithm

For the sake of simplicity, let us consider only the case of electric losses. For the different optimization

techniques mentioned in the introduction, A1, A2, B1, and B2 are constant diagonal matrices containing
invariant optimized coefficients for all nodes. Regarding the proposed adaptive optimization technique,
these coefficients retake values with respect to the environment of the considered node position. Their

elements sweep all the E/H-nodes when being inserted into the matrices CE and CH . Instead of

first calculating the CE and CH matrices as illustrated in [16–18] and the coefficient matrices values

affected during the implementation of the transition matrix G, the shape functions are simultaneously

computed and associated with the appropriate elements of A2 and B2. To implement A1, it would be
adequate to construct a diagonal matrix which respects the numbering of nodes during the numerical
implementation. Otherwise, the adaptive factors sc1[i, j, k] and sc2[i, j, k] ensure that knum is equal
to kexact at the node (i, j, k) for arbitrary incident angles. On the other hand, if we assign constant
values for the scaling factors according to certain directions, the dispersion error is only translated, but
never canceled out. Hence, the AOM based on adaptive factors cancels the dispersion error under its
two forms: phase error and also the loss one, and can be easily implemented without increasing the
computational cost, thanks to the extensive flexibility of the RPIM algorithm.

Inserting Equation (5b) into (3) and replacing the coefficients by adaptive factors leads to:

E⃗n+1(XE
i ) = C1[l,m, n]E⃗

n(XE
i ) + C2[l,m, n]

j=N∑
j=1

{
∇∧ ϕHj

}
(XE

i )H⃗
n+1/2
j , (26)
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where XE
i is the position of the ith E-node of coordinates (l,m, n), and:

C1[l,m, n] =
2ε · A1[l,m, n]− σ · A2[l,m, n]∆t

2ε · A1[l,m, n] + σ · A2[l,m, n]∆t
,

C2[l,m, n] =
2∆t

2ε · A1[l,m, n] + σ · A2[l,m, n]∆t
, (27)

C1[l,m, n] and C2[l,m, n] are not affected by the spatial derivatives since they only depend on the
position; this gives:

E⃗n+1(XE
i ) = C1[l,m, n]E⃗

n(XE
i ) +

j=N∑
j=1

{
∇∧

(
C2[l,m, n] · ϕHj

)}
(XE

i )H⃗
n+1/2
j . (28)

Hence, the C2[l,m, n] terms have to be inserted into the shape functions during the implementation of

CH .
Likewise, inserting Equation (5a) into (4) and replacing the coefficients by adaptive factors leads

to:

H⃗n+1/2(XH
i ) = C ′

1[l,m, n]H⃗
n−1/2(XH

i )− C ′
2[l,m, n]

j=N∑
j=1

{
∇∧ ϕEj

}
(XH

i )E⃗ n
j , (29)

where XH
i is the position of the ith H-node of coordinates (l,m, n), and:

C ′
1[l,m, n] =

2µ · A1[l,m, n]− σ∗ · A2[l,m, n]∆t

2µ · A1[l,m, n] + σ∗ · A2[l,m, n]∆t
,

C ′
2[l,m, n] =

2∆t

2µ · A1[l,m, n] + σ∗ · A2[l,m, n]∆t
, (30)

H⃗n+1/2(XH
i ) = C ′

1[l,m, n]H⃗
n−1/2(XH

i )−
j=N∑
j=1

{
∇∧

(
C ′
2[l,m, n] · ϕEj

)}
(XH

i )E⃗n
j , (31)

the same procedure is repeated for C ′
2[l,m, n] terms which are inserted into the shape functions during

the implementation of CE .

4. NUMERICAL RESULTS AND VALIDATIONS

The RPIM dispersion and anisotropy characteristics in lossy media are given by:

NPE =
β − β0
β0

, NLE =
α− α0

α0
, Ad =

βmax − βmin

βmin
, Al =

αmax − αmin

αmin
, (32)

where β and β0 are the numerical and physical phase constants; α and α0 are the numerical and physical
loss constants; Al is the numerical anisotropy loss; Ad is the anisotropy dispersion; αmax and βmax are
the maxima of numerical loss constant and phase constant when scanning ϕ and θ; and αmin and βmin

are the minima, respectively.
Similar to the range used in [21], the conductivity is selected to vary from 10−4 S/m to 100 S/m,

thereby including the electric conductivity of most dielectric materials [22]. The operating frequency
of the wave we are interested in is set to f = 300MHz; nevertheless, our results are extrapolated to a
larger frequency range.

Figures 1 and 2 show the numerical phase error (NPE) and the numerical loss error (NLE) versus ϕ
for θ = 22.5◦, θ = 45◦, and θ = 45◦. The node sampling rate Ns = 30, the CFL number S3D = 0.5, and
conductivity σ = 0.1 S/m. In the classical axial optimization method, the values of the scale factors are
calculated on the axes of the Cartesian coordinate system and are: sc1 = 1.0622 and sc2 = 0.9360. In
such a method, the phase and loss errors are reduced by up to half compared to RPIM ones. However,
the AOM cancels the NPE and NLE as shown in the bottom of Figures 1 and 2 for all θ values.
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Figure 1. Numerical phase error for RPIM,
axial optimized RPIM and AOM-RPIM with σ =
0.1 S/m, Ns = 30 and S = 0.5.

Figure 2. Numerical loss error for RPIM, axial
optimized RPIM and AOM-RPIM with σ =
0.1 S/m, Ns = 30 and S = 0.5.

Figure 3. Anisotropy dispersion versus conduc-
tivity for RPIM and AOM-RPIM with S = 0.5,
Ns = 40, Ns = 60 and Ns = 80.

Figure 4. Anisotropy loss versus conductivity for
RPIM and AOM-RPIM with S = 0.5.

In summary, NPE decreases from nearly 0.01 for the RPIM to 0.001 for the Axial-Opt-RPIM and
completely canceled for AOM-RPIM whatever the ϕ values.

Figures 3 and 4 present Ad and Al versus electric conductivity σ for Ns = 40, Ns = 60, and
Ns = 80. Indeed, it is predictable that the anisotropy dispersion increases with σ and decreases with
Ns, but for the AOM-RPIM, Ad and Al are fully canceled (to much lower than 10−7).

5. NUMERICAL EXPERIMENTS

To further validate the accuracy of the proposed method, even in the case of higher numerical anisotropy
during the numerical experiments, the spatial sampling rate is fixed to Ns ≃ 20 at f = 3.5GHz.
A 3D rectangular cavity with dimensions 52mm × 40mm × 24mm, filled with a homogeneous lossy
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media, and terminated by PEC walls is considered. The origin is at the lower-left corner of the
domain in the Cartesian directions. In a similar fashion to [15] and [16], the studied domain is
uniformly discretized using double staggered E/H grids (Figures 5 and 6). The cavity is excited
by a sinusoidal point source modulated by a time-dependent Gaussian function given by: Jz(A,n) =
exp[−((n∆t− 4σ)/(

√
2σ))2] sin[2πf(n∆t− 4σ)] located at A (16mm, 20mm, 12mm). The width factor

is σ = 0.122 ns, the CFL number S3D = 0.5, and the observation point is at B (36mm; 20mm; 12mm).
A set of RPIM parameters, transcendentally introduced in the RPIM algorithm [18], are selected so
that the shape parameter α = 2, the maximum distance rmax = 4mm, and the number of nodes in the
support domain N = 8.

Figures 7 and 8 show the recorded Ez component at the observation point as a function of the
frequency for the lossless and the lossy cases, respectively. The TE100, TE010, and TE110 resonance
frequencies are summarized in Tables 1 and 2. By referring to the analytical resonance frequencies,
we note that the relative error is clearly minimal for all the AOM modes in comparison with the axial
optimization method, which in turn is more accurate than the RPIM.

All simulations were performed on AMD Athlon Dual Core Processor PC with a CPU of 2.61GHz
and 2GB RAM.

Table 3 shows the computational time and memory requirements used in the lossless and lossy
cases. For the lossy case, we find almost the same computational cost with a negligible CPU difference
(lower than 1%) between the three methods. However, for the lossy case, one can note a small increase

Figure 5. E/H node distributions in the
rectangular cavity.

Figure 6. H-node support domain.

Figure 7. Ez component at the observation point
of the rectangular cavity as function of frequency
for lossless case. The simulation parameters are
given in Table 1.

Figure 8. Ez component at the observation point
of the rectangular cavity as function of frequency
for lossy case. The simulation parameters are
given in Table 2.
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Table 1. Lossless case: Resonance frequencies given by RPIM, axial-optimized, and AOM-RPIM.
σ = 0S/m, Ns = 20 and S = 0.5.

Method
TE100 TE010 TE110

Frequency

(GHz)

Relative

error

Frequency

(GHz)

Relative

error

Frequency

(GHz)

Relative

error

Analytic 2.884 - 3.75 - 4.731 -

RPIM 2.924 1.36% 3.935 4.95% 4.784 1.12%

Axial-Opt 2.913 1.01% 3.735 0.37% 4.763 0.68%

AOM 2.882 0.056% 3.756 0.17% 4.732 0.035%

Table 2. Lossy case: Resonance frequencies given by RPIM, axial-optimized, and AOM-RPIM.
σ = 0.001 S/m, Ns = 20 and S = 0.5.

Method
TE100 TE010 TE110

Frequency

(GHz)

Relative

error

Frequency

(GHz)

Relative

error

Frequency

(GHz)

Relative

error

Analytic 2.884 - 3.75 - 4.731 -

RPIM 3.022 4.7% 3.627 3.25% 4.791 1.28%

Axial-Opt 2.965 2.79% 3.788 1.03% 4.697 0.71%

AOM 2.880 0.15% 3.750 0.021% 4.735 0.082%

Table 3. Computational time and memory requirement in lossless and lossy cases for the rectangular
cavity.

Method

Lossless case Lossy case

CPU time

(Seconds)

Memory

(Mb)

CPU time

(Seconds)

Memory

(Mb)

RPIM 33.623 182.306 35.218 192.294

Axial-Opt 33.983 182.445 35.494 196.293

AOM 33.934 182.344 36.065 201.894

in the CPU and the memory used by the AOM compared to the RPIM. The relative increase in memory
for the AOM is estimated to about 5%, which is always small and without significant consequences on
the AOM performance.

6. CONCLUSION

In this paper, we have presented the algorithm of a 3D adaptive optimization method, which allowed us
to cancel the numerical anisotropy for Cartesian grids. The derived algorithm can be easily adapted to
the RPIM due to its flexibility. The shape functions are numerically calculated with the corresponding
discretized adaptive factors at each node position. The obtained results deduced from the dispersion
relation confirm that the accuracy is much greater using the AOM approach than with the conventional
axial optimization technique. We have applied this AOM to 3D rectangular cavity resonator for lossless
and lossy cases. A comparative study shows that the AOM accuracy for both cases is far from the
conventional one since both numerical dispersion and loss are canceled. In summary, the NPE decreases
from nearly 0.01 to 0.001 for the axial-opt-RPIM and completely vanishes for AOM-RPIM regardless of
the ϕ values. For all the AOM modes, we have also obtained a minimal relative error in the resonance
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frequencies, compared to previous methods.
Finally, note that the computationally-efficient AOM algorithm is relatively simple to implement

in the RPIM, but its integration into other numerical mesh methods is not an easy task.
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