Vol. 138
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-10-22
Three-Dimensional Imaging Method of Target Based on Time-Domain Sparse Representation of Multi-View SAR Data
By
Progress In Electromagnetics Research C, Vol. 138, 145-159, 2023
Abstract
Three-dimension (3-D) images provide additional information of targets for automatic target recognition (ATR) and 3D scattering model generation. Methods based on sparse representations can reconstruct extreme resolution 3D images from sparse measurements, but suffer from the huge dimension of separable dictionaries. This paper presents a time-domain sparse representation method for 3-D target imaging from multi-view synthetic aperture radar (SAR) data, including a basic method and two improved ones. The time-domain framework uses time-domain responses to build a separable dictionary and a sparse representation model. In the time-domain framework, the basic approach is to transform the dictionary into a rather sparse matrix via a low-energy threshold that shrinks the spatial region of the 3D imaging based on multi-aspect 2D images. By exploiting the properties of multi-aspect SAR data in the time domain, one modification makes the sparse representation model more compact, leading to a reduction in dimension, and another additional modification splits a high-dimensional large-scale model into a set of very low-dimensional small-scale models. They overcome the curse of dimensionality and improve the efficiency of sparse representation-based 3D imaging to varying degrees. Experimental results show the effectiveness and great efficiency of the proposed method.
Citation
Jinrong Zhong, Shengqi Liu, and Xing Zhang, "Three-Dimensional Imaging Method of Target Based on Time-Domain Sparse Representation of Multi-View SAR Data," Progress In Electromagnetics Research C, Vol. 138, 145-159, 2023.
doi:10.2528/PIERC23031002
References

1. Knaell, K., "Three-dimensional SAR from curvilinear apertures," Proceedings of SPIE 2230, Algorithms for Synthetic Aperture Radar Imagery, Orlando, FL, USA, 1994.

2. Soumekh, M., "Reconnaissance with slant plane circular SAR imaging," IEEE Transactions on Image Processing, Vol. 5, No. 8, 1252-1265, 1996.
doi:10.1109/83.506760

3. Bryant, M. L., L. Gostin, and M. Soumekh, "3D E-CSAR Imaging of a T72 tank and synthesis of its SAR reconstructions," IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, No. 1, 211-227, 2003.
doi:10.1109/TAES.2003.1188905

4. Reigber, A. and A. Moreira, "First demonstration of airborne SAR tomography using multi-baseline L-band data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 5, 2142-2152, Sep. 2000.
doi:10.1109/36.868873

5. Dungan, K. E. and L. C. Potter, "3D imaging of vehicles using wide aperture radar," IEEE Transactions Aerospace and Electronic Systems, Vol. 47, No. 1, 187-200, Jan. 2011.
doi:10.1109/TAES.2011.5705669

6. Zhou, J., Z. Shi, and Q. Fu, "Three-dimensional scattering center extraction based on wide aperture data at a single elevation," IEEE Transactions Antennas Propagation, Vol. 53, No. 3, 2051-2060, Mar. 2015.

7. Ertin, E., R. L. Moses, L. C. Potter, C. D. Austin, and S. Sharma, "GOTCHA experience report: Three-dimensional SAR imaging with complete circular apertures," Algorithms for Synthetic Aperture Radar Imagery XIV, SPIE Defense and Security Symposium, Apr. 9-3, 2007.

8. Richards, J. A., A. S. Willsky, et al. "Expectation-maximization approach to target model generation from multiple synthetic aperture radar images," Optical Engineering, Vol. 41, No. 1, 150-166, 2002.
doi:10.1117/1.1417493

9. Jackson, J. A. and R. L. Moses, "An algorithm for 3D target scatterer feature estimation from sparse SAR apertures," Algorithms for Synthetic Aperture Radar Imagery XVI, SPIE, 2009.

10. Jackson, J. A. and R. L. Moses, "Synthetic aperture radar 3D feature extraction for arbitrary flight paths," IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, No. 3, 2065-2083, 2012.
doi:10.1109/TAES.2012.6237579

11. Homer, J., I. D. Longstaff, Z. She, et al. "High resolution 3D imaging via multi-pass SAR," IET Radar Sonar and Navigation, Vol. 149, No. 1, 45-50, Feb. 2002.
doi:10.1049/ip-rsn:20020059

12. Rigling, B. D. and R. L. Moses, "Three-dimensional surface reconstruction from multi-static SAR images," IEEE Transactions on Image Processing, Vol. 14, No. 8, 1159-1171, Aug. 2003.
doi:10.1109/TIP.2005.851690

13. Fornaro, G., F. Serafino, and F. Soldovieri, "Three-dimensional focusing with multipass SAR data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 3, 507-517, Mar. 2003.
doi:10.1109/TGRS.2003.809934

14. Ertin, E., R. L. Moses, and L. C. Potter, "Interferometric methods for 3D target reconstruction with multi-pass circular SAR," IET Radar, Sonar and Navigation, Vol. 4, No. 3, 464-473, Jun. 2010.
doi:10.1049/iet-rsn.2009.0048

15. Potter, L. C., E. Eritin, J. T. Parke, and M. Cetin, "Sparsity and compressed sensing in radar imaging," Proceedings of the IEEE, Vol. 98, No. 6, 1006-1020, Jun. 2010.
doi:10.1109/JPROC.2009.2037526

16. Samadi, S., M. Cetin, and M. A. Masnadi-Shirazi, "Sparse representation-based synthetic aperture radar imaging," IET Radar Sonar and Navigation, Vol. 5, No. 2, 182-193, Feb. 2011.
doi:10.1049/iet-rsn.2009.0235

17. Herman, M. A. and T. Strohmer, "High-resolution radar via compressed sensing," IEEE Transactions on Signal Processing, Vol. 57, No. 6, 2275-2284, Jun. 2009.
doi:10.1109/TSP.2009.2014277

18. Wei, Q., J. X. Zhou, H. Z. Zhao, and Q. Fu, "Three-dimensional sparse turntable microwave imaging based on compressive sensing," IEEE Geoscience and Remote Sensing Letters, Vol. 12, No. 4, 826-830, Apr. 2015.
doi:10.1109/LGRS.2014.2363238

19. Wu, C., Z. Zhang, and W. Yu, "Fast two-dimensional sparse signal gridless recovery algorithm for MIMO array SAR 3-D imaging," IET Radar, Sonar & Navigation, Vol. 14, No. 9, 1370-1381, 2020.
doi:10.1049/iet-rsn.2020.0065

20. Wang, R., B. Deng, Y. Qin, and H. Wang, "Bistatic terahertz radar azimuth-elevation imaging based on compressed sensing," IEEE Transactions on Terahertz Science and Technology, Vol. 4, No. 6, 702-713, Nov. 2014.
doi:10.1109/TTHZ.2014.2348413

21. Xu, G., M. Xing, X. Xia, L. Zhang, Y. Liu, and Z. Bao, "Sparse regularization of interferometric phase and aamplitude for InSAR image formation based on Bayesian representation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 4, 2123-2136, Apr. 2015.
doi:10.1109/TGRS.2014.2355592

22. Austin, C. D., E. Ertin, and R. L. Moses, "Sparse signal methods for 3-D radar imaging," IEEE Journal of Selected Topics in Signal Processing, Vol. 5, No. 3, 408-423, Jun. 2011.
doi:10.1109/JSTSP.2010.2090128

23. Kajbaf, H., J. T. Case, Z. Yang, and Y. R. Zheng, "Compressed sensing for SAR-based wideband three-dimensional microwave imaging system using non-uniform fast Fourier transform," IET Radar Sonar and Navigation, Vol. 7, No. 6, 658-670, Jul. 2013.
doi:10.1049/iet-rsn.2012.0149

24. Qiu, W., J. Zhou, H. Zhao, and Q. Fu, "Fast sparse reconstruction algorithm for multidimensional signals," Electronics Letters, Vol. 50, No. 22, 1583-1585, Oct. 2014.
doi:10.1049/el.2014.2167

25. Qiu, W., J. Zhou, and Q. Fu, "Tensor representation for three-dimensional radar target imaging with sparsely sampled data," IEEE Transactions on Computational Imaging, Vol. 6, 263-275, 2019.

26. Zhu, X. X. and B. Richard, "Tomographic SAR inversion by-norm regularization-the compressive sensing approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 10, 3839-3846, Oct. 2010.
doi:10.1109/TGRS.2010.2048117

27. Kim, S. J., K. Koh, M. Lustig, and S. Boyd, "A method for large-scale l1-regularized least squares," IEEE Journal on Selected Topics in Signal Processing, Vol. 1, No. 4, 606-617, Aug. 2007.
doi:10.1109/JSTSP.2007.910971

28. Mayhan, J. T., M. L. Burrows, K. M. Cuomo, and J. E. Piou, "High-resolution 3D snapshot ISAR imaging and feature extraction," IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, No. 2, 630-641, Apr. 2001.
doi:10.1109/7.937474

29. Goel, K. and A. Nico, "Three-dimensional positioning of point scatterers based on radargrammetry," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 6, 2355-2363, Jun. 2012.
doi:10.1109/TGRS.2011.2171975

30. Richards, J. A., A. S. Willsky, and J. W. Fisher, "Expectation-maximization approach to target model generation from multiple synthetic aperture radar images," Optical Engineering, Vol. 41, No. 1, 150-166, Jan. 2002.
doi:10.1117/1.1417493

31. Thompson, P., M. Nannini, and R. Scheiber, "Target separation in SAR image with the MUSIC algorithm," IEEE International Geoscience and Remote Sensing Symposium, 468-471, 2007.

32. Liu, B., H. Wang, K. Wang, et al. "A foreground/fackground separation framework for interpreting polarimetric SAR images," IEEE Geoscience and Remote Sensing Letters, Vol. 8, No. 2, 288-292, Mar. 2011.
doi:10.1109/LGRS.2010.2064283

33. Davidson, G. and K. Ouchi, "Segmentation of SAR images using multitemporal information," IET Radar Sonar and Navigation, Vol. 150, No. 5, 367-374, Oct. 2003.
doi:10.1049/ip-rsn:20030751

34. Koets, M. A. and R. L. Moses, "Image domain feature extraction from synthetic aperture imagery," IEEE International Conference on Acoustics, Speech, and Signal Processing, 2319-2322, 1999.

35. "l1_ls: Simple matlab solver for l1-regularized least squares problems,", available at http://web.stanford.edu/~boyd/l1_ls/.

36. Potter, L. C., D. M. Chiang, R. Carriere, and M. J. Gerry, "A GTD-based parametric model for radar scattering," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 11, 1058-1067, Oct. 1995.

37. Batu, O. and M. Cetin, "Hyper-parameter selection in non-quadratic regularization-based radar image formation," Proc. Algorithms for Synthetic Aperture Radar Imagery XV. SPIE Defense and Security Symp., Orlando, FL, Mar. 17-20, 2008.

38. Austin, C. R. Moses, J. Ash, and E. Ertin, "On the relation between sparse reconstruction and parameter estimation with model order selection," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, No. 3, 560-570, Jun. 2010.
doi:10.1109/JSTSP.2009.2038313