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Three-Dimensional Imaging of Target Based on Time-Domain Sparse
Representation of Multi-View SAR Data

Jinrong Zhong1, Xing Zhang2, *, and Shengqi Liu3

Abstract—Three-dimension (3-D) images provide additional information of targets for automatic
target recognition (ATR) and 3D scattering model generation. Methods based on sparse representations
can reconstruct extreme resolution 3D images from sparse measurements, but suffer from the huge
dimension of separable dictionaries. This paper presents a time-domain sparse representation method
for 3-D target imaging from multi-view synthetic aperture radar (SAR) data, including a basic method
and two improved ones. The time-domain framework uses time-domain responses to build a separable
dictionary and a sparse representation model. In the time-domain framework, the basic approach is to
transform the dictionary into a rather sparse matrix via a low-energy threshold that shrinks the spatial
region of the 3D imaging based on multi-aspect 2D images. By exploiting the properties of multi-aspect
SAR data in the time domain, one modification makes the sparse representation model more compact,
leading to a reduction in dimensionality, and another additional modification splits a high-dimensional
large-scale model into a set of very low-dimensional small-scale models. They overcome the curse of
dimensionality and improve the efficiency of sparse representation-based 3D imaging to varying degrees.
Experimental results show the effectiveness and great efficiency of the proposed method.

1. INTRODUCTION

Synthetic aperture radar (SAR) is an effective means of ground observation. Three-dimensional (3-D)
imaging of target can provide significant and intuitive characteristics for reconnaissance and automatic
target recognition (ATR) [1–7], and is an essential method in generating the scattering model of
target [8–10]. It is attractive to generate 3-D images of target from multi-aspect SAR measurements [11–
13]. Fourier imaging methods require radar to collect data over densely sampled points in both azimuth
and elevation [14]. In recent years, sparse-representation based 3-D radar imaging methods have been
developed and show advantages and super performance on sparsely collections [15–21]. However, the
huge dimension of separable dictionaries, as well as the costly computation to solve them, is an obstacle
for sparse representation-based methods. Efficient and faster methods are always sought [22–25].

In this paper, we propose a time-domain sparse representation framework for 3D imaging from
multi-aspect SAR measurements, whereas most existing sparse methods work in the frequency domain.
In the time-domain framework, we present a basic 3D imaging method and two improvements. The
basic approach uses multi-aspect 2-D SAR images to exclude 3-D regions, where no scattering center
is located, and constructs a dictionary for candidate locations only. It leads to a reduction in the row
dimension of the dictionary. Then, the low-energy region of the time-domain dictionary is truncated
to make it a fairly sparse matrix, which significantly saves storage space. Exploiting the property
that the energy of a 2D SAR image is congested in several narrow regions, the first improved method
reduces the column dimension of the dictionary. It transforms the sparse representation model in the
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base approximation into a lower dimensional model. The second improved approach splits the entire
3D imaging model into several lower-dimensional sparse representation models, resulting in superior
dimension reduction. These time-domain methods are tractable in terms of memory and computational
requirements, and do not require ad-hoc solving algorithms. The 3-D image is generated through
solving the time-domain representation sparse model by l1-regularized [26, 27]. Experimental results on
two targets demonstrate the effectiveness and efficiency of the proposed time-domain approach.

2. MULTI-VIEW COLLATED SAR DATA

In the present work, a single polarization is studied, and multi-view SAR data is interpreted in terms
of a 3-D spatial spectrum obtained by a 3D Fourier transform of the target reflectivity function for a
particular view’s angles (ϕ, θ) defined by the expression

G(wx, wy, wz) =

N∑
n=1

g(x, y, z;ϕ, θ) · e−j(xnwx+ynwy+znwz) (1)

Here, g(x, y, z;ϕ, θ) is the reflectivity function, and G(wx, wy, wz) is the spatial spectrum. For narrow
angles, it is reasonable to assume that the reflectivity of the scattering center is isotropic. We subdivide
the wide-field survey into a set of possible sub-apertures and assume that the scattering is locally
isotropic at each sub-aperture. Once we have obtained sub-aperture images, an overall wide-angle
image can be formed by fusing the narrow-aperture images in an appropriate manner. Supposing that
I(x, y, z) is the 3-D image in the narrow-aperture with center angle (ϕ, θ), the signal model can be
rewritten as

G(wx, wy, wz) =

N∑
n=1

I(x, y, z) · e−j(xnwx+ynwy+znwz) (2)

Figure 1 depicts a typical collection geometry for multi-view data. D̃k = [G(w
(i,j,k)
x , w

(i,j,k)
y ,

w
(i,j,k)
z )]Mfk,Nfk

i=1,j=1 are the samplings in aspect k, and k = 1, · · · ,K. Mfk is the number of samples
in frequency, and Nfk is the number of samples in azimuth.
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Figure 1. Multiple-aspect SAR collection geometry.

The 3-D coordinates of each sampling in the wavenumber domain are w
(i,j,k)
x =

−4πfi cos θj,k cosϕj,k/c, w
(i,j,k)
y = −4πfi cos θj,k sinϕj,k/c, w

(i,j,k)
z = −4πfi sin θj,k/c. Here, c is the

speed of light. By the projection-slice theorem, each aperture is a fraction of the wavenumber do-
main G(wx, wy, wz). For convenience, the multi-view SAR dataset is denoted as {D̃k}Kk=1, and all

measurements are reshaped into a vector d̃ = [dm]Mm=1. Their coordinates can also be placed into a
vector HM = {}m}Mm=1. }m = (wx,m, wy,m, wz,m) is the m-coordinate, while dm is the corresponding
measurement.
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3. TIME-DOMAIN SPARSE REPRESENTATION FOR 3-D IMAGING

Sparse representation-based 3D imaging methods define a set of locations in the 3D imaging space as
voxels.

QM = {λ̄1, . . . , λ̄N} = {(xn, yn, zn)}Nn=1 (3)

N is the number of voxels. In most existing approaches, the locations are chosen on a uniform rectilinear
grid, and the dictionary is constructed in the frequency domain.

Ψ̃ = F (HM,QM) =
[
e−j(xnwx,m+ynwy,m+znwz,m)

]
m,n

(4)

Here, m indexes the sampling of measurements in the down row of the wavenumber domain, and n
indexes the locations across columns. Then, the measured data can be approximated as,

QFD(QM) : d̃ = Ψ̃ · s+ ṽ (5)

Here, d̃ is the M -dimensional measurement vector of the multi-view SAR data; ṽ is the noise vector;
and s is the N -dimensional scattering amplitude vector to be reconstructed.

ŝ = argmin ∥s∥0 s.t.
∥∥∥Ψ̃ · s− d̃

∥∥∥
2
< ε (6)

ŝ is the solution of the sparse optimization problem (6), which has a complex amplitude value in row
n, if a scattering center is located at λ̄n = (xn, yn, zn) and is otherwise zero in row n.

In this paper, we develop a sparse representation model in the time domain. On the k-th aspect,
the 2-D frequency domain response of a scattering center at λ̄n = [xn, yn, zn]

T is,

Ẽ(HM,k|λ̄n) =
[
exp[−j(xnw(i,j)

x,k + ynw
(i,j)
y,k + znw

(i,j)
z,k )]

]Mfk,Nfk

i=1,j=1
(7)

The response is an Mfk ×Nfk matrix, denoted as Ẽk,n = Ẽ(HM,k|λ̄n). Then Ẽn is transformed to the
time domain.

Ek,n = F−1
2 ·B · Ẽk,n (8)
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Figure 2. Sketch of the original imaging region, its 2-D projection, target support zone and 3-D feasible
region.
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Here, F−1
2 (·) represents the 2-D inverse fast Fourier transform, and B(·) represents resampling 2-D

response Ẽ(f, ϕ) in polar coordinates into a uniform grid in Cartesian coordinates. Mzk and Nzk are
the numbers of points in row and column. In this paper, they are set as Mzk =Mfk and Nzk = Nfk.
Then Ek,n is stacked into an Mzk ·Nzk-dimensional vector. It is the signal component of the k-aspect
of scattering center at position λ̄n. The original time-domain dictionary is given by

Ψ = [ Φ1 · · · ΦN ] =

 φ1,1 · · · φ1,N
...

. . .
...

φK,1 · · · φK,N

 (9)

Here, Φn is the n-th column of the dictionary. It consists of all the time domain signal components of
λ̄n.

Finally, D̃k is transformed to the time domain by Dk = F−1
2 · B · D̃k, and reshape Dk into a

measurement vector dk = [dm]Mk
m=1, Mk =Mzk ·Nzk. The measured data can be approximated as,

QTD(QM) : d = Ψ · s+ v, here d =

 d1
...

dNap

 (10)

Here, v is a time-domain noise vector. s is the N -dimensional scattering amplitude vector to be
reconstructed.

An l1-regulated sparse optimization problem [26, 27] is solved to obtain ŝ∗,

ŝ∗ = argmin
{
∥Ψ · s− d∥22 + λ ∥s∥1

}
(11)

According to the time-frequency duality principle, the frequency-domain model and time-domain
model are equivalent. ŝ∗ has amplitude values in the row if a scattering center is located at
λ̄n = (xn, yn, zn) and is zero otherwise. ŝ∗ maps to the 3-D image, by the relation I(xn, yn, zn) = ŝ∗(n).

4. BASIC TIME-DOMAIN APPROACH TO 3-D IMAGING

In this section, a basic method based on the time-domain spars representation (10) is proposed. Its
specific procedure for constructing a time-domain dictionary, such that the dictionary is a sparse matrix,
is presented. An approach to identify feasible regions is performed by selecting a set of locations in the
3-D space where the image reconstruction will take place.

4.1. Time-Domain Sparse Dictionary

Figure 3 shows an example of Ẽk,n and Ek,n. It can be seen that the energy of the time-domain response
is concentrated in a narrow region. The amplitude in the large region is well below the peak. It does not
depend on the measurement data but is a natural feature of the scattering center model. Time-domain
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Figure 3. One-aspect responses of a 3D scattering center.



Progress In Electromagnetics Research C, Vol. 138, 2023 149

methods truncate the finite-amplitude region such that the response is a sparse matrix. Since φo
k,n is

the signal component of λ̄n in the k-th aspect, let

φo
k,n : φo

k,n(i) =

{
0

φk,n(i)
,

|φk,n(i)| < ξn
else

, i = 1, · · · , Nzk ·Mzk (12)

Here ξn is an adaptive threshold. Its value is determined by a function, ξn =
Nzk·Mzk
max
i=1

(|φk,n(i)|) ·10βd/20.

βd < 0 is an empirical threshold for the entire dictionary. After all φk,n have been processed, the
time-domain dictionary becomes a spare matrix by replacing φk,n with φo

k,n. We still label the present
dictionary as Ψ and let φo

k,n → φk,n.
When βd > −∞, Ψ is a sparse matrix. Let No be the number of non-zero elements and

η = No/(M · N) the fraction of non-zero elements. Denote the degree of sparsity of the lexicographic
matrix by η. The larger the βd is, the smaller the η is, and the sparser Ψ is beneficial for reducing the
data size of the dictionary.

4.2. Shrinking of 3-D Imaging Region

We use the target information provided by the 2D images to reduce the feasible area for 3D imaging.
Suppose that Q is the 3-D imaging space, Pk(Q) the projected region of Q on the k-th 2-D image, and
Sk the target area detected from the k 2-D image. Sk is referred to as the 2-D support zone of the
target. It indicates the potential region where the scattering center of the target may lie. Figures 2(a)
and 2(b) show sketches of Q, Qk(Q), and Sk. Commonly, the 3-D imaging space is set as a rectangular
parallelepiped. Pk(Q) is always larger than the 2-D range of the target, as far as the scattering centers
of most artificial targets are sparse on a 2-D image. Thus, Pk(Q) is larger than Sk.

When the flight passes parallel to ground (XOY plane), the projection transformation between
3-D locations and 2-D locations at the k aspect is given by,[

x′

y′

]
k

= Hk ·

[
x
y
z

]
, here Hk =

[
− sinϕk cosϕk 0

− cos θk cosϕk − cos θk sinϕk − sin θk

]
(13)

If the flight path is not parallel to the XOY plane, our approach is the same except that Hk needs
a modification. The projection transformation can be derived from signal-processing theory [28] or
photogrammetry theory [29, 30]. Without loss of generality, the flight path is assumed to be parallel to
the XOY plane in the following.

With Sk and transformation (13), the parts of A that no scattering center located at can be quickly
discarded. λ̄ = [x, y, z]T is assumed to be an arbitrary location in the 3D imaging range, λ̄ ∈ Q. And
Pk(λ̄) = Hk · λ̄ is its projection location on the k-th 2-D image. If Qk(λ̄) is in Sk, such a case is referred
to as “λ̄ associated with Sk”, denoted as Pk(λ̄) ∈ Sk. λ̄ is considered as a candidate site for 3D imaging
only if it is associated with more than two Sk. Otherwise, it is an invalid site. The 3D-imaging feasible
region consists of all candidate sites.

Support zones are detected from images by target detection methods such as constant false alarm
rate detection or image segmentation methods. The principle of determining the support region is to
maintain that the scattering centers of all regions may be located at. In this paper, we use a hard-
threshold image segmentation method to generate the support region of the target on each 2-D SAR
image. It may be stated as follows,

Sk : {x, y|
∣∣I ′k(x, y)∣∣ > max(

∣∣I ′k(x, y)∣∣) · 10βs/20

Here βs is a threshold set manually in this paper. It is reasonable to set a lower threshold to ensure that
all potential target regions are included. While this may introduce non-target regions, it does not cause
trouble as the subsequent correlation mechanism can overcome it. A logical function ℓ′k(λ̄) is defined to
indicate whether λ̄ is assigned to Sk.

ℓ′k(λ̄) =

{
1
0

Pk(λ̄) ∈ Sk

Pk(λ̄) /∈ Sk
k = 1, . . . ,K (14)
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The 3-D imaging feasible region is defined as: for any arbitrary location in feasible region,
Formula (15) is satisfied.

ℓ(λ̄) =

K∑
k=1

ℓ′k(λ̄) ≥ βℓ (15)

Here, the feasible region, denoted as Q∗, is a part of Q; λ̄ is an arbitrary location in the feasible region;
βℓ(2 ≤ βℓ ≤ K) is a priori threshold. The mechanism of the feasible region generation is sketched in
Figure 2(c). Since the feasible region has been found, it is advisable to construct a dictionary for only
the feasible region rather than Q, which will reduce the columns of the separable dictionary.

By definition, the feasible region is continuous. People should find it and then sample it into a set
of candidate locations Q∗

M. In practice, it can be generated in a simple way. The first is to choose a
set of locations on a uniform rectilinear grid QM = {λ̄n}Nn=1. Secondly, it projects all N locations onto
K 2-D images, then computes the value of the logical function ℓ′k(λ̄n) and the support function ℓ(λ̄n).
According to ℓ(λ̄n), a large number of 3-D locations are eliminated, while the remaining locations are
the feasible region.

Q∗
M : ℓ(λ̄n) =

K∑
k=1

ℓ′k(λ̄n) ≥ βℓ, n = 1, · · ·N (16)

5. TWO EXTENSION TIME-DOMAIN APPROACHES TO 3-D IMAGING

In this section, two improved methods are extended by taking some preprocessing of the measured
data. The first exploits the fact that the target region is considerably smaller than the extent of the 2-D
image. The second one exploits the fact that the target region consists of several separable subareas.

5.1. The First Extension Method

The energy of the 2D time-domain response of each artificial target is concentrated in a few finite
regions, while the energy of the SAR data is well distributed in the frequency domain. An example is
shown in Figure 4. If the measurement data of target are noiseless, or a target-separation procedure
has been performed to them [31, 32], resulting in significant regions of low energy in the 2-D image.
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Figure 4. SAR data of a target at one aspect.

By setting the low energy region to zero, the residual region that remains nonzero is taken to be
the support region of the target signal, denoted as Rk. It can be generated by either a target separation
method or an image segmentation method. The implications of Rk and target region Sk are quite
different, although they can be obtained by the same method with different thresholds. While the
principle for determining Sk is to include all regions where the scattering center is likely to be located,
the principle for determining Rk is to maintain a sufficient signal component for the target.

After truncation, the measurement vector d is constructed using the truncated time-domain
measurement data, and the rows with zero measurements in the sparse representation model are merged.
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The zero elements in d are indexed by mq, where q = 1, . . . ,Mo, andMo is the number of zero elements.
The corresponding rows of Ψ are subsequently consolidated as follows.

d∗ =

[
d′

0

]
, Ψ∗ =

[
Ψ′

ψ

]
Here, d′ is the remainder by removing the zero-value elements in d,M ′ =M−Mo. The sub-dictionaryΨ′

is the remainder of Ψ by removing the corresponding rows. 1×N merged row vector ψ=[∆φ1, . . . ,∆φN ]
is computed by,

ψ(n) =

Q∑
q=1

Ψ(mq, n), and ∆φn =

Q∑
q

∣∣φmq ,n

∣∣ (17)

The measurement corresponding to this row is set to zero. After such a dimension reduction, d∗ is an
M∗ × 1 vector, and Ψ∗ is an M∗ × N matrix, M∗ = M ′ + 1. The sparse representation model of the
basic approach is reduced to a lower dimensional one.

Q∗
TD(Q∗

M) : d∗ = Ψ∗ · s+ v (18)

We can generate the sparse vector ŝ∗ by solving an optimization as expression (11) and interpolates s
into a 3-D image by the same way as the basic method.

5.2. The Second Extension Method

In some cases, the target area Rk consists of numerous tiny areas or can be segmented into several
smaller regions by SAR image-segmentation technology [33, 34]. Let Rk be the number of subareas in
the k-th 2-D image and denote the subareas as R∗

r,k, r = 1, · · · , Rk. If there is a sub-feasible region of
Q∗

M unconnected with the rest, and the following conditions,

• Condition 1: All candidate locations in this sub-feasible region are assigned to a sub-queue
{R∗

rp,kp
}Pp=1.

• Condition 2: no candidate site outside this sub-feasible region is associated with {R∗
rp,kp

}Pp=1.

are satisfied, the sub-feasible regions are defined as independent sub-feasible regions. Suppose that there
are Q (Q ≥ 1) independent sub-feasible regions in a 3-D imaging task. When Q = 1, the whole Q∗

...
is

tokenized as an independent sub-feasible region. Since the 3-D imaging aperture is not wide, and the
baselines of the 2-D SAR images are not far from each other, it is common for an artificial target to
have more than one independent sub-feasible region. They are indexed by q and denoted as Q∗∗

M,q. The

corresponding sub-queue is denoted as R∗∗
q = {R∗

rp,kp
}Pp=1.

The independent sub-feasible regions are identified as follows. First, the entire feasible region is
separated into several sub-feasible regions using the connected component labeling method. Second,
the extraction of independent sub-feasible regions can be done by an index-labeling step. Let a Q×Rk

matrix lk = [lkq,r]q,r label whether these locations in the separated feasible region associated to R∗
r,k on

the k -th 2-D image. If the q-th 3D subregion is associated with R∗
r,k, l

k
r,q = 1. Figure 5 is a schematic

…

Sub feasible  region

 

Figure 5. Diagrammatic sketch of an independent sub-feasible region.
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of a 3-D independent feasible region and a 2-D target subarea, and the correlation between them. A
matrix L = [lk] labels all the correspondences. Perform a matrix elementary operation to transform
L into a block matrix. Each block initializes an independent sub-feasible region, which may consist of
more than one disconnected subregion.

LB =

 b1 · · · 0
...

. . .
...

0 · · · bQS


Then, we divide the entire feasible region into Q independent subregions, Q∗∗

M,q, q = 1, · · · , Q. The

time-domain measurement vector of the separable region R∗∗
q is denoted as dq = [drp,kp ]

P
p=1. As a few

elements of that vector are nonzero, every subregion utilizes the sparse-representation model (17) for
imaging, similar to the first improved method.

Q∗
TD(Q∗∗

M,q) : d∗∗
q = Ψ∗∗

q · s∗∗q + v (19)

where d∗∗
q is a condensed dq, and M

∗∗
q is its length. The dictionary Ψ∗∗

q is an M∗∗
q ×N∗∗

q matrix. N∗∗
q

is the number of candidate locations of Q∗∗
M,q.

If Q ≥ 2, the sparse-representation model of 3-D imaging for the whole region, which is high-
dimensional, is divided into a set of low-dimensional models.

Q∗∗
TD(Q∗

...
) :


d∗∗
1 = Ψ∗∗

1 · s∗∗1 + v
...

d∗∗
Q = Ψ∗∗

Q · s∗∗Q + v

(20)

After solving every sub-model d∗∗
q = Ψ∗∗

q · s∗∗q + v in (20) respectively and mapping every s∗∗q to a sub-
3-D image, the whole 3-D image is a superimposition of all sub-images. As Q > 2, Q ≥ 2, M∗∗

q < M ,

N∗∗
q < N , and M∗∗

q ×N∗∗
q << M ×N , the dimension of Ψ∗∗

q is much lower than Ψ and Ψ∗, let alone Ψ̃.
Since the large-scale problem has been transformed into a minor-scale problem of size Q, the imaging
efficiency will be considerably improved over the basic and first improved approaches.

Essentially, condition 1 is a bit too unscrupulous for most applications. Due to the approximate
orthogonality of signals of the separated regions [32], only if Q∗∗

M,q is unconnected from the others,

and all locations in Q∗∗
M,q are associated with a sub-queue R∗∗

q = {R∗
rp,kp

}Pp=1, it is practical to use

model (20) for 3-D imaging in numerous applications.

6. EXPERIMENTAL RESULTS

This section presents results of the application of the three time-domain methods to synthetic SAR
data of a simulated target and data of an SLICY-like target generated by electromagnetic magnetism
(EM) code. For comparison, we also reconstruct 3-D images using the frequency domain method. The
experiments use the large-scale l1-regularized least squares method [27] and the corresponding l1 ls
MATLAB solver toolbox [35] to solve the optimization problems (6) and (11) of sparse representation.

6.1. Experiment of Simulated Target

This experiment details the performance of our time-domain approach on a simulated target. The target
consists of 11 scattering centers located in the range Q = {x, y, z| − 2 ≤ x < 2,−2 ≤ y < 2, 0 ≤ z < 1}
meters. The coordinates are listed in Table 1. We simulate SAR data of five aspects by GTD model [36]

G(wx, wy, wz) =

P∑
i=1

Ai · (jf/fc)αi · e−j(xiwx+yiwy+ziwz) (21)

Here Ai is generated randomly in the range [−16, 0] dB of the maximum. α is set to one of
[−1,−0.5, 0, 0.5, 1], randomly. SAR data are simulated at five aspects (θk, ϕk), ϕk = 5◦, k = 1, . . . , 5,

and θ1 = 22.5◦, θ2 = 23.5◦, θ3 = 24.5◦, θ4 = 25.5◦, θ5 = 27.5◦. The aperture is
⌢

ϕ = 5◦ and the
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Table 1. Locations of the 11 scattering centers of target.

Index [x, y, z] Index [x, y, z]

1 [−1.727, 0.890, 0.771] 7 [1.598,−0.499, 0.512]

2 [0.975,0.750,0.635] 8 [−1.727, 0.250, 0.771]

3 [0.975,0.499,0.635] 9 [1.598,0.8895,0.512]

4 [0.975,−0.499, 0.635] 10 [−1.727,−0.250, 0.771]

5 [−1.727,−0.890, 0.771] 11 [0.499,0.044,0.685]

6 [1.598,0.499,0.512]

spacing ∆ϕ = 0.1◦. The frequency band is 8.5 to 9.5GHz with a frequency step of ∆f = 30MHz.
We add zero-mean white Gaussian noise with a signal-to-noise of −20 dB. In this paper, we define the
signal-to-noise ratio (SNR) as the ratio of the peak image amplitude to the noise standard deviation in
the 2D image domain. It is expressed in the dB scale as SNR = 20 ∗ log10(|pkimage|/σimg). The five
SAR images with noise are shown in Figure 6(a).

The 3D imaging space Q is first meshed into a set of 3D locations with spacings ∆x = 0.1m,
∆y = 0.1m, ∆z = 0.1m, resulting in a total of N = 18491 locations. The traditional methods
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Figure 6. 3-D imaging results of time-domain method and frequency method of simulated target.
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have to construct a dictionary for all the locations, in which the dimensions of dictionary are
M × N = 4420 × 18491. In the basic time-domain approach, the threshold is set to βs = −30 dB,
βℓ = 5 to generate the feasible region Q∗

M. As a result, there are only N∗ = 2520 locations remaining
in the feasible region. It is only N∗/N = 13.6% of the original. The threshold βd = −50 dB is used to
construct the time-domain dictionary. The dimensions of the dictionary are M × N∗ = 4420 × 2520,
while the proportion of nonzero elements is η = 7.1%. It is claimed that the data size of the dictionary
of our basic method is only 13.6% × 7.1% = 0.97% of the traditional frequency-domain dictionary. In
addition, it has been found that identifying feasible 3D imaging regions helps to overcome noise and
speckles. The energy of the target region on the 2-D image is constantly elevated, while high-energy
noise or speckles arise randomly. There is a slight probability that the speckles will appear at all βℓ 2-D
locations. As a result, some of the speckles that might have appeared were discarded. These dominance
properties are not related to the solution algorithm but are a property of the time-domain approach.

The sparse representation model is then solved with the sparsity parameter λ = 7 for the basic
time domain method and λ = 1000 for the frequency domain method to generate 3-D images. Sparse
parameters were manually selected by visual inspection of the images. Automatic selection of sparse
parameter is an ongoing area of research [37, 38].

Figure 6(b) is the image reconstructed by the frequency-domain sparse-representation method.
Figure 6(c) is the image reconstructed by the basic time-domain method. The top 25 dB magnitude
voxels are displayed (the same below except specifically marked). The two 3D images are almost
identical. The features in these sparsely reconstructed images are adequately resolved. The remaining
3D voxels are located in a neighborhood of the true scattering center. This is reasonable since we
deliberately set their positions not to be exactly inside the grid points. The motivation for this is to
check the robustness of the proposed method.

The basic time-domain method takes 9.6 seconds to obtain the solution, while the frequency-
domain method takes 843.4 seconds. In detail, the time-domain method needs 35 iterations and 11.7
preconditioned conjugate gradient (PCG) iterations for each iteration, on average. The frequency
domain method requires 72 iterations and 34.5 PCG iterations on average. The time-domain approach
is more efficient. Better temporal efficiency may benefit from the lower dimension of the sparse
representation problem, as well as the smaller data size of the dictionary. Moreover, a time-domain
dictionary consisting of cut-off responses may be helpful to avoid noise jamming and accelerate
convergence.

Also, the experimental results of the two modified methods are presented. For the first improved
method, the target separation is implemented in this experiment by a hard thresholding method. The
empirical threshold for separation is −25 dB of the image peak, which is chosen based on the noise level.
Regions above and equal to −25 dB are assigned to the target region, while regions below −25 dB are
assigned to the noise region. Since the SAR image has a 20 dB signal-to-noise ratio, some noise regions
may remain. Since the residual noises on different images are uncorrelated, they are dislodged by the
imaging method. As shown in the following experiments, the residual noise barely contributes to the
3-D imaging. Furthermore, for the second improved method, the image segmentation is implemented
by a watershed method as used in [34]. We then solve the sparse representation model for the two
modified methods with the same sparsity parameter λ = 7.

Imaging results are shown in Figures 6(d) and 6(e), as Figure 6(d) is reconstructed by the first
improved method, and Figure 6(e) is the result of the second improved method. Locations of the
remaining voxels are approximately the same as Figure 6(b), apart from some slight difference in
amplitudes. It indicates that both extended methods are effective for formalizing 3D images from
multi-view data. Both methods show significant efficiency gains over traditional methods and our base
method. In the first improved method, the dimensions of the dictionary are M∗ × N∗ = 418 × 2520,
considerably lower than dimensions of the traditional M × N = 4420 × 18491, also lower than the
dimensions of the basic time-domain one M∗ × N∗ = 4420 × 2520. Obviously, this is only 1.29%
and 9.45% of the frequency domain dictionaries, respectively. The computation time of the solution
is 2.6 seconds. In the second improved method, the imaging task is broken down into two lower
dimension sparse-representation problems: one is M∗∗ × N∗∗ = 165 × 1032 dimensional; the other is
M∗∗×N∗∗ = 223×1418 dimensional. The computation times of the solutions are 0.97 and 1.21 seconds,
respectively.
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6.2. Experiment of EM Code Data of SLICY Target

This section presents the results of applying our algorithm to the SLICY target synthetic data. The data
were generated by an EM code capable of accurately simulating arbitrary EM scattering measurements
obtained by irradiating a faceted model target. We set the parameters for the synthetic data as: central
frequency fc = 10GHz, bandwidth BW = 4GHz, frequency step ∆f = 30MHz.

We then produce measurements on the scale of 1/5 of a SLICY target, at three periastron angles.
The center azimuth and elevation are ϕc,1 = −85.7◦, ϕc,2 = −86.7◦, ϕc,3 = −87.7◦, θ1 = 30◦, θ2 = 33◦,

θ3 = 35◦. All apertures are
⌢

ϕ = 5◦, and the azimuthal sample spacing is ∆ϕ = 0.2◦. We add white
Gaussian noise with SNR = 30dB in the 2-D image domain. Figures 8(a) and 8(b) show the SLICY
target and three simulated SAR images, in which the dynamic amplitude range for display is [−35, 0] dB.

We set the original 3-D imaging range as {x, y, z|−3m ≤ x < 3m,−3m ≤ y < 3m,−1m ≤ z < 3m},
which corresponds to the target size. We then meshed it into a grid with spacings ∆x = 0.05m,
∆y = 0.05m, ∆z = 0.05m, resulting in N = 120 × 120 × 80 = 1152000 locations. If a traditional
method were employed, the dimensions of the dictionary would beM×N = 10530×1152000 ≈ 1×1010.
Dealing with a problem of such enormous dimension is as difficult as it is extraordinarily difficult, both
with respect to the larger amount of data and with respect to the computation. For instance, it would
be necessary to store the dictionary matrix in a 1× 1010 dimensional complex space. If the dictionary
were stored with double precision, the dictionary’s data size would be M × N × 2 × 8 bytes, which is
more than 160GB! Performing such a huge dimension problem in a common experimental environment
is a difficult task.

Figures 7(c)∼7(h) show the imaging results of the time-domain methods with parameters βs =
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Figure 7. 3-D imaging results of three time-domain methods at azimuth ϕ = 86.7◦.
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−30 dB, βℓ = 3, and βd = −50 dB. Figures 7(c)∼7(e) in the second row are the formatted 3-D images,
while Figures 7(f)∼7(h) in the third row are the superposition of the 3-D image and the CAD model
of target. All three methods produce satisfactory 3D images. The position of the voxels indicates the
structural shape of the target and provides visual information about the target. The differences in the
amplitudes of the voxels are too slight to be easily detected.

Figures 7(c) and 7(f) show the 3-D imaging result of our basic method. In this case, the sparse-
imaging task is reduced to M × N∗ = 10530 × 4993 dimensional, which is 0.43% of the dimensions of
frequency-domain method. The proportion of nonzero elements of its dictionary is η = 2.5%. In total,
the data size of time-domain dictionary of basic method is only of the frequency-domain dictionary.
In other words, it results in a savings of more than a factor of 9,300 in storage space. Moreover, the
computation time of the solution is only 15.5 seconds. Figures 7(d) and 7(g) show the imaging result
of the first improved time-domain method. The target separation was thresholded at −25 dB. The
dimensions of the dictionary are reduced to M∗×N∗ = 318× 4993, less than 0.03% of the time-domain
method. Its data size is only 1.84e-5 of the frequency domain dictionary. This results in more than
a factor of 5.4e+4 storage savings. The solution took 2.4 seconds to compute. Figures 7(e) and 7(h)
show the imaging results of the second improved time-domain method. In this case, the imaging task is
divided into four lower-dimensional problems, which areM∗∗

1 ×N∗∗
1 = 20×711, M∗∗

2 ×N∗∗
2 = 41×1083,

M∗∗
3 ×N∗∗

3 = 25× 921, M∗∗
4 ×N∗∗

4 = 102× 2278 dimensional, respectively. Both the data size and time
complexity are considerably reduced.

An additional example is performed to show the applicability of our approach to distributed
scattering centers. Figure 8(a) shows another three images with several distributed scattering centers of
the SLICY target. The azimuth and elevation of the center are ϕc,1 = −90◦, ϕc,2 = −90◦, ϕc,3 = −90◦,

and θ1 = 30◦, θ2 = 33◦, θ3 = 35◦. The aperture is
⌢

ϕ = 5◦ degrees, and the azimuthal distance is
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Figure 8. 3-D imaging results of three time-domain methods at azimuth ϕ = −90◦.
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∆ϕ = 0.2◦ degrees.
Figures 8(b)∼8(g) show the 3-D imaging results of our three time-domain methods with parameters

βs = −25 dB, βℓ = 3, and βd = −50 dB. The meaning of the subgraph is the same as in Figure 7. The
image generated by the basic method is shown in Figures 8(b) and 8(e). In this example, the dimensions
of sparse dictionary are M × N∗ = 10530 × 4763, which is 0.42% of the frequency-domain dictionary.
The percentage of nonzero elements in the time-domain dictionary is also η = 2.5%, and the dictionary
has only 1.06e-4 data size compared to the frequency-domain dictionary. Figures 8(c) and 8(f) show the
result of the first improved method. The target separation is thresholded at −25 dB. The dimensions of
the sparse dictionary are reduced to M∗ ×N∗ = 3329× 4763, about 0.13% of the transitional methods.
Some minor lobes appear and are caused by the truncation of the signal. Figures 8(d) and 8(g) show the
imaging result of the second improved method. In this trial, the imaging model is divided into six sub-
models with lower dimensions, which respectively areM∗∗

1 ×N∗∗
1 = 168×1365,M∗∗

2 ×N∗∗
2 = 187×1286,

M∗∗
3 ×N∗∗

3 = 65× 476, M∗∗
4 ×N∗∗

4 = 69× 598, M∗∗
5 ×N∗∗

5 = 83× 426, M∗∗
6 ×N∗∗

6 = 177× 945.

7. CONCLUSIONS

In this paper, we present a basic approach and two improvements based on a time-domain sparse
representation framework for 3D imaging from multi-view SAR data of a target. The proposed method
exploits the properties of scattering physics in the time domain, including the geometric projection of
3-D and 2-D images, the information demonstrated by 2-D images, and the properties of 2-D time-
domain responses, to improve the efficiency of 3-D imaging of targets. The basic approach is to reduce
the column dimension and make the dictionary a sparse matrix. The first extension reduces both
row and column dimensions. They are three to five orders of magnitude lower than frequency-domain
methods in terms of storage and computation. The second extension decomposes the high-dimensional
problem into a set of low-dimensional problems, which further improves the efficiency in certain cases.
Roughly speaking, the proposed time-domain approach significantly reduces the dimension and data
size of sparse representations compared to the traditional frequency-domain approach, which is also
beneficial for solution efficiency improvement. Experimental results show that the proposed method
effectively and efficiently generates high-resolution 3D images of the target, while reducing the daunting
dimensionality and huge computational burden of the dictionary.
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16. Samadi, S., M. Çetin, and M. A. Masnadi-Shirazi, “Sparse representation-based synthetic aperture
radar imaging,” IET Radar Sonar and Navigation, Vol. 5, No. 2, 182–193, Feb. 2011.

17. Herman, M. A. and T. Strohmer, “High-resolution radar via compressed sensing,” IEEE
Transactions on Signal Processing, Vol. 57, No. 6, 2275–2284, Jun. 2009.

18. Wei, Q., J. X. Zhou, H. Z. Zhao, and Q. Fu., “Three-dimensional sparse turntable microwave
imaging based on compressive sensing,” IEEE Geoscience and Remote Sensing Letters, Vol. 12,
No. 4, 826–830, Apr. 2015.

19. Wu, C., Z. Zhang, and W. Yu, “Fast two-dimensional sparse signal gridless recovery algorithm for
MIMO array SAR 3-D imaging,” IET Radar, Sonar & Navigation, Vol. 14, No. 9, 1370–1381, 2020.

20. Wang, R., B. Deng, Y. Qin, and H. Wang, “Bistatic terahertz radar azimuth-elevation imaging
based on compressed sensing,” IEEE Transactions on Terahertz Science and Technology, Vol. 4,
No. 6, 702–713, Nov. 2014.

21. Xu, G., M. Xing, X. Xia, L. Zhang, Y. Liu, and Z. Bao, “Sparse regularization of interferometric
phase and aamplitude for InSAR image formation based on Bayesian representation,” IEEE
Transactions on Geoscience and Remote Sensing, Vol. 53, No. 4, 2123–2136, Apr. 2015.

22. Austin, C. D., E. Ertin, and R. L. Moses, “Sparse signal methods for 3-D radar imaging,” IEEE
Journal of Selected Topics in Signal Processing, Vol. 5, No. 3, 408–423, Jun. 2011.

23. Kajbaf, H., J. T. Case, Z. Yang, and Y. R. Zheng, “Compressed sensing for SAR-based wideband
three-dimensional microwave imaging system using non-uniform fast fourier transform,” IET Radar
Sonar and Navigation, Vol. 7, No. 6, 658–670, Jul. 2013.

24. Qiu, W., J. Zhou, H. Zhao, and Q. Fu, “Fast sparse reconstruction algorithm for multidimensional
signals,” Electronics Letters, Vol. 50, No. 22, 1583–1585, Oct. 2014.

25. Qiu, W., J. zhou, Q. Fu, “Tensor representation for three-dimensional radar target imaging with
sparsely sampled data,” IEEE Transactions on Computational Imaging, Vol. 6, 263–275, 2019.

26. Zhu, X. X. and B. Richard, “Tomographic SAR inversion by-norm regularization-the compressive
sensing approach,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 10, 3839–
3846, Oct. 2010.

27. Kim, S. J., K. Koh, M. Lustig, and S. Boyd, “A method for large-scale l1-regularized least squares,”
IEEE Journal on Selected Topics in Signal Processing, Vol. 1, No. 4, 606–617, Aug. 2007.



Progress In Electromagnetics Research C, Vol. 138, 2023 159

28. Mayhan, J. T., M. L. Burrows, K. M. Cuomo, and J. E. Piou, “High-resolution 3D snapshot ISAR
imaging and feature extraction,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 37,
No. 2, 630–641, Apr. 2001.

29. Goel, K. and A. Nico, “Three-dimensional positioning of point scatterers based on
radargrammetry,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 6, 2355–
2363, Jun. 2012.

30. Richards, J. A., A. S. Willsky, and J. W. Fisher, “Expectation-maximization approach to target
model generation from multiple synthetic aperture radar images,” Optical Engineering, Vol. 41,
No. 1, 150–166, Jan. 2002.

31. Thompson, P., M. Nannini, and R. Scheiber, “Target separation in SAR image with the MUSIC
algorithm,” IEEE International Geoscience and Remote Sensing Symposium, 468–471, 2007.

32. Liu, B., H. Wang, K. Wang, et al., “A foreground/fackground separation framework for interpreting
polarimetric SAR images,” IEEE Geoscience and Remote Sensing Letters, Vol. 8, No. 2, 288–292,
Mar. 2011.

33. Davidson, G. and K. Ouchi, “Segmentation of SAR images using multitemporal information,” IET
Radar Sonar and Navigation, Vol. 150, No. 5, 367–374, Oct. 2003.

34. Koets, M. A. and R. L. Moses, “Image domain feature extraction from synthetic aperture imagery,”
IEEE International Conference on Acoustics, Speech, and Signal Processing, 2319–2322, 1999.

35. “l1 ls: Simple matlab solver for l1-regularized least squares problems,” available at
http://web.stanford.edu/∼boyd/l1 ls/.

36. Potter, L. C., D. M. Chiang, R. Carriere, and M. J. Gerry, “A GTD-based parametric model for
radar scattering,” IEEE Transactions on Antennas and Propagation, Vo. 43, No. 11, 1058–1067,
Oct. 1995.
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