Vol. 131
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-03-25
An Enhanced Active Disturbance Rejection Control of BPMSM Based on Neural Network Parameters Dynamic Adjustment Method
By
Progress In Electromagnetics Research C, Vol. 131, 159-169, 2023
Abstract
An enhanced linear active disturbance rejection control (E-LADRC) method with dynamically adjust is proposed to improve the observer gain and observation effect in the convenient linear active disturbance rejection control (C-LADRC), reduce the sensitivity of the observer to interference, and find the appropriate observer gain coefficient. Firstly, the mathematical model of bearingless permanent magnet synchronous motor (BPMSM) and the C-LADRC algorithm are described and analyzed. Secondly, the E-LADRC algorithm is designed to overcome the shortcomings of the C-LADRC. Thirdly, the back propagation neural network (BPNN) algorithm with strong self-learning and adaptive ability is used to dynamically adjust the parameters of the E-LADRC, so as to improve the performance of the control system. Finally, the whole control system is analyzed, and the effectiveness of the proposed algorithm is verified on the experimental platform. The experimental results show that the proposed control algorithm can effectively reduce the jitter amplitude of speed and displacement.
Citation
Wang Xin, and Huangqiu Zhu, "An Enhanced Active Disturbance Rejection Control of BPMSM Based on Neural Network Parameters Dynamic Adjustment Method," Progress In Electromagnetics Research C, Vol. 131, 159-169, 2023.
doi:10.2528/PIERC23022104
References

1. Valente, G., A. Formentini, L. Papini, et al. "Performance improvement of bearingless multisector PMSM with optimal robust position control," IEEE Transactions on Power Electronics, Vol. 34, No. 4, 3575-3585, Apr. 2019.
doi:10.1109/TPEL.2018.2853038

2. Zhu, T., X. Cao, Q. Yu, et al. "Direct torque control with phase commutation optimization for single-winding bearingless switched reluctance motor," IEEE Transactions on Power Electronics, Vol. 37, No. 11, 13 238-13 249, Nov. 2022.
doi:10.1109/TPEL.2022.3183001

3. Yang, Z., J. Jia, X. Sun, and T. Xu, "An enhanced linear adrc strategy for a bearingless induction motor," IEEE Trans. Transp. Electrif., Vol. 8, No. 1, 1255-1266, Mar. 2022.
doi:10.1109/TTE.2021.3112972

4. Yang, Z., Q. Ding, X. Sun, et al. "Fractional-order sliding mode control for a bearingless induction motor based on improved load torque observer," J. Franklin Inst., Vol. 358, No. 7, 3701-3725, May 2021.
doi:10.1016/j.jfranklin.2021.03.006

5. Sun, X., L. Chen, H. Jiang, et al. "High performance control for a bearingless permanent-magnet synchronous motor using neural network inverse scheme plus internal model controllers," IEEE Transactions on Power Electronics, Vol. 63, No. 6, 3479-3488, Jun. 2016.

6. Zhu, H. and Z. Gu, "Active disturbance rejection control of 5-degree-of-freedom bearingless permanent magnet synchronous motor based on fuzzy neural network inverse system," ISA Trans., Vol. 101, 295-308, Jun. 2020.
doi:10.1016/j.isatra.2020.01.028

7. Chen, Y. and Y. Zhou, "Active disturbance rejection and ripple suppression control strategy with model compensation of single-winding bearingless flux-switching permanent magnet motor," IEEE Transactions on Power Electronics, Vol. 69, No. 8, 7708-7719, Aug. 2022.

8. Da Silva, W., A. O. Salazar, P. V. F. Vieira, et al. "Radial position control of a bearingless machine with active disturbance rejection control fuzzy an approach," ICA-ACCA, 1-5, Mar. 2021.

9. Yang, Z., C. Lu, X. Sun, et al. "Study on active disturbance rejection control of a bearingless induction motor based on an improved particle swarm optimization-genetic algorithm," IEEE Trans. Transp. Electrif., Vol. 7, No. 2, 694-705, Jun. 2021.
doi:10.1109/TTE.2020.3031338

10. Zhou, X., H. Gao, B. Zhao, and L. Zhao, "A GA-based parameters tuning method for an ADRC controller of ISP for aerial remote sensing applications," ISA Trans., Vol. 81, 318-328, Oct. 2018.

11. Wang, Y., S. Fang, and J. Hu, "Active disturbance rejection control based on deep reinforcement learning of PMSM for more electric aircraft," IEEE Transactions on Power Electronics, Vol. 38, No. 1, 406-416, Jan. 2023.
doi:10.1109/TPEL.2022.3206089

12. Lin, P., Z. Wu, K. Liu, and X. Sun, "A class of linear-nonlinear switching active disturbance rejection speed and current controllers for PMSM," IEEE Transactions on Power Electronics, Vol. 36, No. 12, 14 366-14 382, Dec. 2021.
doi:10.1109/TPEL.2021.3086273

13. Qu, L., W. Qiao, and L. Qu, "Active-disturbance-rejection-based sliding-mode current control for permanent-magnet synchronous motors," IEEE Transactions on Power Electronics, Vol. 36, No. 1, 751-760, Jan. 2021.
doi:10.1109/TPEL.2020.3003666