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An Enhanced Active Disturbance Rejection Control of BPMSM
Based on Neural Network Parameters Dynamic Adjustment Method

Xin Wang and Huangqiu Zhu*

Abstract—An enhanced linear active disturbance rejection control (E-LADRC) method with
dynamically adjust is proposed to improve the observer gain and observation effect in the convenient
linear active disturbance rejection control (C-LADRC), reduce the sensitivity of the observer to
interference, and find the appropriate observer gain coefficient. Firstly, the mathematical model
of bearingless permanent magnet synchronous motor (BPMSM) and the C-LADRC algorithm are
described and analyzed. Secondly, the E-LADRC algorithm is designed to overcome the shortcomings
of the C-LADRC. Thirdly, the back propagation neural network (BPNN) algorithm with strong self-
learning and adaptive ability is used to dynamically adjust the parameters of the E-LADRC, so as to
improve the performance of the control system. Finally, the whole control system is analyzed, and
the effectiveness of the proposed algorithm is verified on the experimental platform. The experimental
results show that the proposed control algorithm can effectively reduce the jitter amplitude of speed
and displacement.

1. INTRODUCTION

Bearingless permanent magnet synchronous motor (BPMSM) combines the magnetic bearing technology
with permanent magnet synchronous motor and controls the suspension and rotation of the rotor
through the stator windings of the motor. Since the transmission shaft is not in contact with the stator,
BPMSM has the characteristics of no mechanical friction and wear, high critical speed, maintenance
free, long life, and no pollution [1, 2]. Since the BPMSM superimposes torque magnetic field and
suspension magnetic field, the whole system will be a high-order, multivariable, and strong coupling
nonlinear system. Therefore, the classical proportional integral differential (PID) control will not
meet the high performance control requirements of the BPMSM [3]. In order to make the BPMSM
have high-performance control effects, many control methods have been applied, such as sliding mode
control [4], internal model control [5], neural network control [5], and active disturbance rejection control
(ADRC) [3, 6–9]. Because sliding mode control method, internal model control method and neural
network control method have poor parameter sensitivity, it is difficult to replace the PID control. The
ADRC is independent of the actual model and can use the extended state observer to compensate the
total disturbance in real-time, so as to achieve high performance control effect.

In previous studies, several scholars use ADRC to achieve high-performance control of bearingless
motors. In [3], cascaded extended state observers (ESOs) are used to realize the ADRC control of speed
and displacement, which improve the dynamic performance and control accuracy of the whole control
system. In [6], fuzzy neural network inverse system and the ADRC method are used to realize the
high-performance decoupling control of the BPMSM. Although the performance of the control system
is better than that of the PID method, the entire algorithm requires too much computation. In [7],
the corresponding ESO and state error feedback (SEF) are designed based on the derived displacement
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and rotational speed integral series standard mathematical model of the single-winding flux-switching
bearingless motor as the basis of the ADRC. At the same time, the adjustment process of the parameters
is analyzed by combining the parameters with the bandwidth.

A single constant parameter cannot affect the performance of the ADRC control method, despite
its strong control performance. Da Silva et al. (2021) regard the error and the incremental change of the
ADRC parameters as the input and output signals of the fuzzy control algorithm respectively to realize
the dynamic adjustment of parameters [8]. However, fuzzy control relies on strong expert experience,
and poor fuzzy control experience will reduce the performance of the entire control system. In [9], the
particle swarm genetic algorithm is used in a bearingless induction motor to optimize the parameters of
the ADRC, which greatly improves the performance of the control system. The real-time performance
of this approach, however, is challenging to satisfy because it is created with 10 populations and 100
iterations. Similarly, other intelligent optimization algorithms can also optimize the ADRC parameters.
Although the optimized parameters can improve the performance of the control system, the real-time
performance of the system is difficult to be satisfied [10, 11]. Although the aforementioned papers can
enhance the performance of the control system by dynamically adjusting the ADRC parameters, there
are more or less drawbacks. Therefore, it is necessary to continue researching the dynamic adjustment
of the ADRC parameters.

The rest of this paper is structured as follows. In Section 2, the mathematical model of the
BPMSM and the algorithm structure of the ADRC are derived. In Section 3, the E-LADRC algorithm
is designed to overcome the shortcomings of the C-LADRC. In Section 4, the process of dynamic
parameter adjustment of the BPNN algorithm is analyzed and deduced in detail. Section 5 proves the
feasibility of this method through experiments. The content of this paper is summarized in Section 6.

2. THE BPMSM MATHEMATICAL MODEL AND ADRC ALGORITHM

2.1. The BPMSM Mathematical Model

The torque windings and suspension force windings of the BPMSM are placed in stator slots, and the
schematic diagram of the BPMSM is shown in Fig. 1. When the pole pairs of the torque windings PM

and the suspension force windings PB differ by 1, and the current frequency connected to the two sets
of windings is equal, i.e., PM = PB ± 1, ωM = ωB, BPMSM will be able to stabilize suspension. At this
time, the corresponding expression of the suspension force in the control system is{

ΣFx = Fux + Fdx − Fx = mẍ

ΣFy = Fuy + Fdy − Fy = mÿ
(1)

Figure 1. Schematic diagram of the BPMSM.
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where Fux and Fuy are unbalanced magnetic pull in x- and y-axis static coordinate systems, respectively.
Fdx and Fdy are the additional disturbing forces in the x- and y-axis directions, respectively. Fx and Fy

are respectively the controllable suspension force in the x- and y-axis directions.
The expressions of electromagnetic torque and mechanical motion equation are

Te = 1.5PMλf iMq +M ′d (If iBq + iMqiBd) +M ′q (If iBd − iMqiBq) (2)

J
dωm

dt
= Te − TL −Bωm (3)

where PM is the number of motor pole pairs, λf the permanent magnet flux linkage, J the moment
of inertia, ωm the mechanical angular speed of the motor, TL the load torque, B viscous damping. If
is the equivalent excitation current amplitude of the permanent magnet. iMd and iMq are currents of
d- and q-axes at motor-side, respectively. M ′ is the mutual inductance coefficient. d and q are the
displacements of d- and q-axes, respectively.

2.2. Establishment of the Conventional LADRC Control Algorithm

The high-performance control requirements of the BPMSM cannot be met by a standard PID control
since there are several coupling considerations involved in its operation. The ADRC achieves high
performance control effect by actively observing the total disturbance of the system and actively
suppressing the disturbance. Therefore, ADRCs are used to replace the PID controllers of the BPMSM
speed loop and displacement loop [12, 13]. At the same time, in order to ensure the rapidity of current
loop, PI controllers are still used for current loop at motor side and suspension side.

2.2.1. C-LADRC Design of Motor-side Speed Loop

According to the previous expression of electromagnetic torque and mechanical motion equation, the
following expression can be constructed.

dωM

dt
=

1.5P 2
Mλf

J
iMq +

1

J

[
M ′dPM (If iBq + iMqiBd) +M ′qPM (If iBd − iMqiBq)− PMTL −BωM

]
= bu+ fw (4)

where b is the motor parameter gain, b =
1.5P 2

Mλf

J , and fw is the total disturbance.
According to the above formula, the form of (6) conforms to the normal form of the ADRC;

therefore, the ADRC can be used to control the speed. The ADRC of the motor-side speed loop shown
in Fig. 2(a) can be constructed.

(a) (b)

Figure 2. Block diagram of LADRC. (a) Speed loop. (b) Displacement loop.

The state equation in the linear ESO (LESO) can be written as{
żM21 = zM22 − β1 (zM21 − ωM ) + bsuM
żM22 = −β2 (zM21 − ωM )

(5)
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where zM21 and zM22 are the speed observation value and disturbance observation value, respectively.
β1 and β2 are the observer gains.

The equation in linear SEF (LSEF) can be written as

us = β3 (ω
∗
M − zM21) (6)

where ω∗
M is the given value of motor speed, β3 the gain of LSEF, and us the LSEF output value.

The compensation output of the disturbance is

uM = us −
zM22

bs
(7)

2.2.2. C-LADRC Design of Suspension-Side Displacement Loop

The ADRC structure of the suspension-side displacement loop is similar to that of the motor-side speed
loop. According to (1), the form of the active disturbance rejection normal form can be constructed.

ẍ = − 1

m
Fx +

1

m
(Fux + Fdx) =

1

m
Fx +

1

m
(Fux + Fdx − 2Fx) = b1u+ fx1

ÿ = − 1

m
Fy +

1

m
(Fuy + Fdy) =

1

m
Fy +

1

m
(Fuy + Fdy − 2Fy) = b1u+ fy1

(8)

where fx1 and fy1 are the disturbance values.
According to (8), the ADRC of the suspension-side displacement loop shown in Fig. 2(b) can be

constructed according to the corresponding normal form.
Taking the ADRC in the x axis direction as an example, the state equation inside the LESO can

be written as 
żB31 = zB32 − βp1 (zB31 − x)

żB32 = zB33 − βp2 (zB31 − x) + bpup
żB33 = −βp3 (zB31 − x)

(9)

where zB31 is the displacement observation value; zB32 is the observed value of displacement differential;
zB33 is the disturbance value; βp1, βp2, and βp3 are the gain of observer.

The equation in LSEF can be written as

u0 = βp4 (x− zB31)− βp5zB32 (10)

where βp4 and βp5 are the gain of the LSEF.
The compensation output of the disturbance is

up = u0 −
zB33

bp
(11)

The C-LADRC of motor-side speed loop and suspension-side displacement loop both need high
bandwidth to meet the requirements of fast tracking. However, low anti-interference capacity of the
system will result from high bandwidth, which makes it difficult to find the parameters of the control
system. Therefore, an E-LADRC is designed based on LADRC to overcome the defects of the LADRC
and improve the disturbance immunity and stability of the system.

3. DESIGN OF THE E-LADRC CONTROLLERS

3.1. E-LADRC Design of Motor-Side Speed Loop

The following improvements are made based on Section 2.2.1. A cascaded LESO is used to replace the
traditional LESO. The schematic is shown in Fig. 3. The overall disturbance of the LESO1 is considered
as the known disturbance of the LESO2, and this disturbance will be used as the input of the LESO2.
The LESO2 observes the remaining disturbances except zM22. By adding the estimated interference of
LESO1 and LESO2, the overall interference of the torque system is removed. The detailed analysis is
described below.
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The state equation of LESO1 is established as{
żM21 = zM22 − βw1(zM21 − ωM ) + bsuM

żM22 = −βw2(zM21 − ωM )
(12)

The preliminary estimated disturbance of the LESO1 is zM22, which is regarded as the known part
of the LESO2. The state equation of the LESO2 is established as{

ṡM21 = sM22 + zM22 − βw3(sM21 − ωM ) + bsuM

ṡM22 = −βw4(sM21 − ωM )
(13)

where the tracking effect on speed for sM21 is comparable to that for zM21. sM22 is the observed value
of the remaining disturbance.

In light of the analysis above, the enhanced LESO can be used in place of the conventional LESO
as an integrator. The enhanced LESO improves stability of the speed loop by reducing the weight of
observation compared to the conventional LESO, allowing the disturbance to be tracked and corrected
timely with a small observer bandwidth. In Fig. 3(a), the measured speed is chosen because LESO1 and
LESO2 have slow observation speeds, and the chosen observer bandwidth is quite small. In order to
simplify the complexity of parameters adjustment, the parameters are set as [βw1 βw2] = [βw3 βw4].

(a) (b)

Figure 3. Block diagram of speed loop E-LADRC. (a) Speed loop. (b) Displacement loop.

3.2. E-LADRC Design of Suspension-Side Displacement Loop

The state equation of the LESO1 in Fig. 3(b) is established as
żB31 = zB32 − βs1 (zB31 − x)

żB32 = zB33 − βs2 (zB31 − x) + bpup
żB33 = −βs3 (zB31 − x)

(14)

The preliminary observed disturbance of the LESO1 is zB33. The state equation of the LESO2 is
ṡB31 = sB32 − βs4 (sB31 − x)

ṡB32 = sB33 + zB33 − βs5 (sB31 − x) + bpup
ṡB33 = −βs6 (sB31 − x)

(15)

where sB31 and sB32 have a similar tracking effect on speed to zB31 and zB32. sB33 is the observed value
of the remaining disturbance.

Similarly, the third-order E-LESO can be regarded as the double integral series. The E-LESO boosts
the observer’s tracking capabilities in comparison to the C-LESO. When a high observer bandwidth is
selected, the anti-interference ability of the suspension system will be improved, because the system can
still maintain stability. In order to simplify the complexity of parameters adjustment, the parameters
are set as [βs1 βs2 βs3] = [βs4 βs5 βs6].
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In [3], the adjustment of controller parameters mentioned above is related to the bandwidth
parameters, which can effectively reduce the difficulty of parameter adjustment. However, the
bandwidth parameters require strong practical adjustment experience, and a set of parameters cannot
be universal. Therefore, the adjustment of parameters is difficult.

4. THE BPNN ALGORITHM AND ANALYSIS

Since many gains and coefficients in the E-LADRC have a crucial impact on the operation of the
BPMSM, dynamic adjustment of these gains and coefficients can effectively improve the operation
quality of the motor. The BPNN algorithm is a multilayer feedforward neural network trained according
to the error back propagation algorithm, which includes input layer, hidden layer, and output layer. The
BPNN will not have a great impact on the global training results when its local or partial neurons are
damaged. In addition, the BPNN can greatly reduce the computation time because of its computational
advantages compared with evolutionary algorithm. The specific algorithm block diagram for adjusting
BPNN E-LADRC parameters is shown in Fig. 4(a).

(a) (b)

Figure 4. Block diagram of E-LADRC and BPNN. (a) E-LADRC. (b) BPNN.

In this paper, a three-layer BPNN is used. The input layer selects the important three variables in
the neural network algorithm, error e, actual output component y, and constant item 1. The number
of hidden layer nodes is determined to be 5 based on the comprehensive control effect and calculation
amount. The output of the output layer corresponds to the gains of the LESO1 and LESO2 of the
speed loop E-LADRC controller βw1, βw2, βw3, βw4, and correlation coefficient bs. The output layer of
BPNN in suspension control corresponds to the gains of the LESO1 and LESO2 of displacement loop
E-LADRC controller βs1, βs2, βs3, βs4, βs5, βs6, and correlation coefficient bp. The basic structure of
the designed BPNN is shown in Fig. 4(b).

Take the structure in Fig. 4(b) as an example to analyze the network. The input and output parts
corresponding to the hidden layer are

nethidi (k) =

3∑
j=1

whid
ij oinj

ohidi (k) = f
(
nethidi (k)

) , i = 1, 2, ..., 5 (16)

where whid
ij is the weight coefficient of the hidden layer.

The input and output parts of the output layer are netoutl (k) =

5∑
i=1

wout
li oimi (k)

ooutl (k) = g
(
netoutl (k)

) , l = 1, 2, 3 (17)
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The parameters of the E-LADRC that need to be adjusted by the BPNN are represented by each
element of the output node. (16) and (17) employ the following functions, respectively, as the activation
functions f(·) and g(·), where f(x) = (ex − e−x)/(ex + e−x), g(x) = (ex)/(ex + e−x).

The performance evaluation function is defined as

E(k) =
1

2
[rin(k)− yout(k)]2 (18)

The formula can be updated continuously by using the gradient descent method, that is, search
and adjust according to the negative gradient direction of E(k) to the weight coefficients.

The updating process of the parameters of the accelerated gradient descent method is

∆wout
li (k) = −η

[
(1− µ)

∂E(k)

∂wout
li (k)

+ µ
∂E(k − 1)

∂wout
li (k − 1)

]
(19)

where η is the learning rate, and µ is the momentum factor.
The weight calculation process of the output layer is

h (k) =
∂E (k)

∂wout
li (k)

=
∂E (k)

∂y (k)
· ∂y (k)

∂ooutl (k)
·

∂ooutl (k)

∂netoutl (k)
·
∂netoutl (k)

∂wout
li (k)

(20)

Since the second term in (20) is unknowable and hard to calculate, and the following formulation
can be used in its place.

∂y(k)

∂ooutl (k)
→ sgn

(
∂y(k)

∂∆ooutl (k)

)
(21)

The third and fourth terms on the right side of (20) can be expressed as

∂ooutl (k)

∂netoutl (k)
·
∂netoutl (k)

∂wout
li (k)

= g′
(
netoutl (k)

)
· ohidi (k) (22)

where g′(·) = g(·)(1− g(·)).
The following formula is derived by substituting (20)–(22) into (19).

∆wout
li (k) = −η

[
(1− µ) δoutl (k) ohidi (k) + µδoutl (k − 1) ohidi (k − 1)

]
(23)

where δoutl (k) = −e(k) · sgn
(

∂y(k)
∂∆ooutl (k)

)
· g′(netoutl (k)).

Similarly, the weight update formula of the input layer is

∆whid
ij (k) = −η

[
(1− µ) δhidi (k) ohidj (k) + µδhidi (k − 1) ohidj (k − 1)

]
(24)

where δhidi (k) = δoutl (k) · wout
li (k) · f ′(netoutl ), f ′(·) = (1− f(·))/2.

The adaptive learning rate is utilized to enhance the optimization performance of the BPNN by
accelerating training and preventing the network from reaching the local minimum. The following form
can be used to iteratively update the specific learning rate.

η (k) = 2sgn(h(k)·h(k−1))η (k − 1) (25)

In this paper, the BPNN is used to continuously update the E-LADRC parameters to improve the
performance of the control system. The general block diagram of the BPMSM control system based on
the BPNN E-LADRC is shown in Fig. 5. The whole control is divided into suspension vector control
and motor vector control. Between them, the proposed algorithm is used to update the parameters of
the displacement loop E-LADRC in suspension vector control and the speed loop E-LADRC in motor
vector control. Since the current loop in suspension vector control and motor vector control can be
equivalent with a first-order link, a simple and efficient PI controller can be used. As a result, the
BPNN algorithm better meets performance requirements when real-time requirements are high. The
BPNN in the speed loop takes the speed error and actual speed as the input of the module. After
real-time adjustment, it outputs 4 gains and correlation coefficients in (12)–(13). The BPNN in the
displacement loop takes displacement error and actual displacement as the input of the module. After
real-time adjustment, it outputs 6 gains and 1 correlation coefficient in (14)–(15).
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Figure 5. The general block diagram of the BPMSM control system.

5. EXPERIMENTAL ANALYSIS

In order to verify the effectiveness of the proposed BPNN E-LADRC algorithm applied to the BPMSM,
the corresponding experiments are carried out on the experimental platform. The experimental
prototype platform and specific parameters are shown in Fig. 6 and Table 1. In Fig. 6, the upper power
drive circuit board supplies power to the torque windings of the BPMSM, and the lower power drive
circuit board supplies power to the suspension force windings of the BPMSM. The initial parameters
of the speed loop C-LADRC in Section 2.2.1 are set as β1 = 2.5e5, β2 = 2e3, β3 = 40, bs = 166. The
initial parameters of the displacement loop C-LADRC in Section 2.2.2 are set as βp1 = 8e3, βp2 = 1.2e3,
βp3 = 60, βp4 = 15, βp5 = 8e − 3, bp = 6.25. The PI parameters of the current loop at the motor-
side are respectively set to Kp = 0.23, Ki = 1.7e − 2. The PI parameters of the current loop at the
suspension-side are respectively set to Kp = 0.5, Ki = 4.5e− 3.

Since the BPNN does not need to update parameters in every control cycle, the execution frequency

Symbol Value Symbol Value
UN (V) 220 nN (r/min) 3000
PN (kW) 1.1 PM/PB 1/2
λf (Wb) 0.166 M ′ 6.67
RM (Ω) 2.32 RB (Ω) 1.85
LM (mH) 13.42 LB (mH) 2.34

Table 1. The parameters of the prototype. Figure 6. Experimental platform.



Progress In Electromagnetics Research C, Vol. 131, 2023 167

(a) (b)

Figure 7. ADRC parameter adjustment process. (a) Motor-side. (b) Suspension-side.

(a) (b) (c)

Figure 8. Speed waveforms in different methods. (a) C-LADRC. (b) BPNN C-LADRC. (c) E-LADRC.

of the BPNN can be appropriately reduced. Here, the number of BPNN executions is set to one tenth
of the interrupt frequency. The process of BPNN adjusting the E-LADRC parameters in real-time is
shown in Fig. 7.

Figure 8 shows the speed waveforms of three different control algorithms. Fig. 8(a) is the speed
waveform of the C-LADRC algorithm. At 1500 r/min, the speed changes by 25 r/min, and at 3000 r/min,
it changes by 18 r/min. Fig. 8(b) shows the speed waveform of C-LADRC parameters dynamically
adjusted by BPNN. At 1500 r/min, the speed changes by 20 r/min, and at 3000 r/min, it changes by
18 r/min. Fig. 8(c) shows the speed waveform of the proposed algorithm. At 1500 r/min, the speed
changes by 15 r/min. Compared with C-LADRC, the speed change is reduced by 40%, and compared
with BPNN C-LADRC, the speed change is reduced by 25%. At 3000 r/min, the speed changes by
12 r/min. Compared with C-LADRC, the speed change is reduced by 33.3%, and compared with BPNN
C-LADRC, the speed change is reduced by 33.3%. The speed fluctuation of the proposed algorithm is
smaller than that of the previous two algorithms.

Figure 9 shows the displacement waveforms of three different control algorithms. Fig. 9(a) is
the displacement waveform of the C-LADRC algorithm. At 2 s, the displacement in the x direction
changes suddenly and stabilizes at 20µm after 0.25 s. Fig. 9(b) shows the displacement waveform of
C-LADRC parameters dynamically adjusted by BPNN. It can be seen from the figure that within the
time range of 0–2 s, the displacement in the x direction and y direction has multiple mutations, which
is caused by the instability of parameters during the dynamic adjustment of parameters. At 2 s, the
displacement in x direction has sudden changes and is stable at 20µm after 0.15 s. Fig. 9(c) shows the
displacement waveform of the proposed algorithm. It can be seen from the figure that the fluctuation
range of displacement is 20µm in the time range of 0–2 s, and the displacement in the x direction
changes abruptly in 2 s and is stable at 20µm after 0.13 s. The proposed algorithm not only suppresses
mutation better, but also has better stability.
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(a) (b) (c)

Figure 9. Displacement waveforms in different methods. (a) C-LADRC. (b) BPNN C-LADRC. (c)
E-LADRC.

6. CONCLUSION

In this paper, an E-LADRC algorithm based on BPNN parameter dynamic adjustment is proposed
to solve the problem of insufficient disturbance rejection at C-LADRC. The E-LADRC algorithm uses
two ESOs to replace the ESO in C-LADRC, thus effectively improving the performance of the entire
control system. The BPNN method is used to dynamically alter the parameters of E-LADRC in order
to address the problem of parameter adjustment. The results of the experiments demonstrate that the
algorithm of BPNN dynamic optimization of E-LADRC parameters may significantly enhance control
performance, decrease speed and displacement fluctuation, and reduce dynamic response time.
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