Vol. 132
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-04-11
Propagation of Electromagnetic Waves Along a Compact Nerve Fiber in the Optical and Infrared Ranges
By
Progress In Electromagnetics Research C, Vol. 132, 37-49, 2023
Abstract
A study is made of the guiding properties of a nerve fiber consisting of myelinated axons as applied to electromagnetic waves in the optical and infrared ranges. Based on rigorous expressions for the electromagnetic field in the presence of a nerve fiber, the dispersion properties and field structures of eigenmodes guided by the fiber are analyzed for different values of the dielectric permittivity of myelin. It is shown that such a complex waveguide of natural origin can support the propagation of weakly attenuated eigenmodes in the considered ranges. It is shown that the dispersion properties and field structures of the modes of the nerve fiber can differ significantly from those of a single axon.
Citation
Vasiliy A. Es'kin, Sergey V. Leonov, Oleg M. Ostafiychuk, and Alexander V. Kudrin, "Propagation of Electromagnetic Waves Along a Compact Nerve Fiber in the Optical and Infrared Ranges," Progress In Electromagnetics Research C, Vol. 132, 37-49, 2023.
doi:10.2528/PIERC23021905
References

1. Musk, E., "An integrated brain-machine interface platform with thousands of channels," J. Med. Internet Res., Vol. 21, No. 10, e16194, 2019.
doi:10.2196/16194

2. Song, E., J. Li, S. M. Won, W. Bai, and J. A. Rogers, "Materials for flexible bioelectronic systems as chronic neural interfaces," Nature Mater., Vol. 19, No. 6, 590-603, 2020.
doi:10.1038/s41563-020-0679-7

3. Ayton, L. N., N. Barnes, G. Dagnelie, T. Fujikado, G. Goetz, R. Hornig, B. W. Jones, M. M. Muqit, D. L. Rathbun, K. Stingl, J. D. Weiland, and M. A. Petoe, "An update on retinal prostheses," Clinical Neurophysiol., Vol. 131, No. 6, 1383-1398, 2020.
doi:10.1016/j.clinph.2019.11.029

4. Plaksin, M., E. Kimmel, and S. Shoham, "Cell-type-selective effects of intramembrane cavitation as a unifying theoretical framework for ultrasonic neuromodulation," eNeuro, Vol. 3, No. 3, e0136-15.2016, 2016.
doi:10.1523/ENEURO.0136-15.2016

5. Basser, P. J. and B. J. Roth, "Stimulation of a myelinated nerve axon by electromagnetic induction," Med. Biol. Eng. Comput., Vol. 29, No. 3, 261-268, 1991.
doi:10.1007/BF02446708

6. Fork, R. L., "Laser stimulation of nerve cells in aplysia," Science, Vol. 171, No. 3974, 907-908, 1971.
doi:10.1126/science.171.3974.907

7. Abaya, T., S. Blair, P. Tathireddy, L. Rieth, and F. Solzbacher, "A 3D glass optrode array for optical neural stimulation," Biomed. Opt. Express, Vol. 3, No. 12, 3087-3104, 2012.
doi:10.1364/BOE.3.003087

8. Ford, J. B., M. W. Jenkins, H. J. Chiel, and E. D. Jansen, "Reducing peak temperatures during infrared inhibition of neural potentials," Optogenetics and Optical Manipulation, Proc. SPIE, Vol. 10052, 28-34, 2017.

9. Shapiro, M. G., K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, "Infrared light excites cells by changing their electrical capacitance," Nature Commun., Vol. 3, No. 1, 736-746, 2012.
doi:10.1038/ncomms1742

10. Angotzi, G. N., F. Boi, A. Lecomte, E. Miele, M. Malerba, S. Zucca, A. Casile, and L. Berdondini, "SiNAPS: An implantable active pixel sensor CMOS-probe for simultaneous large-scale neural recordings," Biosensors Bioelectron., Vol. 126, 355-364, 2019.
doi:10.1016/j.bios.2018.10.032

11. Leonard, J. T., D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, and S. Nakamura, "Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture," Appl. Phys. Lett., Vol. 107, No. 1, 011102, 2015.
doi:10.1063/1.4926365

12. Marblestone, A. H., B. M. Zamft, Y. G. Maguire, M. G. Shapiro, T. R. Cybulski, J. I. Glaser, D. Amodei, P. B. Stranges, R. Kalhor, D. A. Dalrymple, D. Seo, E. Alon, M. M. Maharbiz, J. M. Carmena, J. M. Rabaey, E. S. Boyden, G. M. Church, and K. P. Kording, "Physical principles for scalable neural recording," Frontiers Comput. Neurosci., Vol. 7, 137, 2013.

13. Zhou, R., Z. Mou, D. Yang, and X. Wang, "Theoretical simulation of the selective stimulation of axons in different areas of a nerve bundle by multichannel near-infrared lasers," Med. Biol. Eng. Comput., Vol. 60, No. 1, 205-220, 2022.
doi:10.1007/s11517-021-02475-y

14. Chernov, M. M., R. M. Friedman, and A. W. Roe, "Fiberoptic array for multiple channel infrared neural stimulation of the brain," Neurophotonics, Vol. 8, No. 2, 025005, 2021.
doi:10.1117/1.NPh.8.2.025005

15. Zhu, X., J.-W. Lin, A. Turnali, and M. Y. Sander, "Single infrared light pulses induce excitatory and inhibitory neuromodulation," Biomed. Opt. Express, Vol. 13, No. 1, 374-388, 2022.
doi:10.1364/BOE.444577

16. Es'kin, V. A., A. V. Kudrin, and A. A. Popova, "Excitation of an electromagnetic field in a compact nerve fiber by a system of filamentary electric currents," Radiophys. Quantum Electron., Vol. 62, No. 1, 65-76, 2019.
doi:10.1007/s11141-019-09954-1

17. Es'kin, V. A., A. V. Kudrin, and A. A. Popova, "Excitation of an electromagnetic field in a large nerve fiber by an array of electric-dipole filaments," 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, 1-4, Rome, Italy, August 29-September 5, 2020.

18. Kumar, S., K. Boone, J. Tuszynski, P. Barclay, and C. Simon, "Possible existence of optical communication channels in the brain," Sci. Rep., Vol. 6, 36508, 2016.
doi:10.1038/srep36508

19. Zangari, A., D. Micheli, R. Galeazzi, and A. Tozzi, "Node of Ranvier as an array of bio-nanoantennas for infrared communication in nerve tissue," Sci. Rep., Vol. 8, 539, 2018.
doi:10.1038/s41598-017-18866-x

20. Liu, G., C. Chang, Z. Qiao, K. Wu, Z. Zhu, G. Cui, W. Peng, Y. Tang, J. Li, and C. Fan, "Myelin sheath as a dielectric waveguide for signal propagation in the mid-infrared to terahertz spectral range," Adv. Funct. Mater., Vol. 29, No. 7, 1807862, 2019.
doi:10.1002/adfm.201807862

21. Maghoul, A., A. Khaleghi, and I. Balasingham, "Engineering photonic transmission inside brain nerve fibers," IEEE Access, Vol. 9, 35399-35410, 2021.
doi:10.1109/ACCESS.2021.3062299

22. Xiang, Z., C. Tang, C. Chang, and G. Liu, "A primary model of THz and far-infrared signal generation and conduction in neuron systems based on the hypothesis of the ordered phase of water molecules on the neuron surface I: Signal characteristics," Sci. Bull., Vol. 65, No. 4, 308-317, 2020.
doi:10.1016/j.scib.2019.12.004

23. Xiang, Z., C. Tang, C. Chang, and G. Liu, "A new viewpoint and model of neural signal generation and transmission: Signal transmission on unmyelinated neurons," Nano Res., Vol. 14, No. 3, 590-600, 2021.
doi:10.1007/s12274-020-3016-1

24. Segelstein, D. J., The complex refractive index of water, M.Sc. thesis, University of Missouri, 1981.

25. Min, Y., K. Kristiansen, J. M. Boggs, C. Husted, J. A. Zasadzinski, and J. Israelachvili, "Interaction forces and adhesion of supported myelin lipid bilayers modulated by myelin basic protein," Proc. Natl. Acad. Sci. USA, Vol. 106, No. 9, 3154-3159, 2009.
doi:10.1073/pnas.0813110106

26. Bioud, F.-Z., P. Gasecka, P. Ferrand, H. Rigneault, J. Duboisset, and S. Brasselet, "Structure of molecular packing probed by polarization-resolved nonlinear four-wave mixing and coherent anti-Stokes Raman-scattering microscopy," Phys. Rev. A, Vol. 89, No. 1, 013836, 2014.
doi:10.1103/PhysRevA.89.013836

27. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Dover, Mineola, 1974.

28. Yasumoto, K., Electromagnetic Theory and Applications for Photonic Crystals, Taylor and Francis, Boca Raton, 2006.

29. Vendromin, C. and M. M. Dignam, "Simple way to incorporate loss when modeling multimode-entangled-state generation," Phys. Rev. A, Vol. 105, No. 6, 063707, 2022.
doi:10.1103/PhysRevA.105.063707

30. Kocharovsky, V. V., C. B. Reynolds, and Vl. V. Kocharovsky, "Eigenmodes of a lamellar optical grating: Profile, propagation, reflection, transmission, and nonadiabatic mode coupling," Phys. Rev. A, Vol. 100, No. 5, 053854, 2019.
doi:10.1103/PhysRevA.100.053854

31. Ostafiychuk, O. M., V. A. Es'kin, A. V. Kudrin, and A. A. Popova, "Electromagnetic waves guided by a myelinated axon in the optical and infrared ranges," 2019 Photonics & Electromagnetics Research Symposium --- Spring (PIERS --- Spring), 1180-1184, Rome, Italy, June 17-20, 2019.