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Propagation of Electromagnetic Waves along a Compact Nerve Fiber
in the Optical and Infrared Ranges

Vasiliy A. Es’kin*, Sergey V. Leonov, Oleg M. Ostafiychuk, and Alexander V. Kudrin

Abstract—A study is made of the guiding properties of a nerve fiber consisting of myelinated axons
as applied to electromagnetic waves in the optical and infrared ranges. Using a rigorous representation
of the electromagnetic field in the presence of a nerve fiber, the dispersion characteristics and field
distributions of modes guided by the fiber are analyzed for different values of the dielectric permittivity
of myelin. It is found that such a complex waveguide of natural origin is capable of supporting the
propagation of weakly attenuated modes in the indicated ranges. It is shown that the dispersion
properties and field structures of the modes of the nerve fiber can differ significantly from those of a
single axon.

1. INTRODUCTION

Recent advances in biocompatible materials and neural technology have made it possible to create
unique high-bandwidth brain-machine interface systems with an unprecedented packing density of
electrodes [1, 2] and machine-brain devices that can serve as a prosthesis for human sensing systems [3].
In these applications, the excitation of electrophysiological activity in nerve cells is performed by a
contact method due to the applied potential difference to the electrodes immersed in the nerve tissue.
Such a method of nerve cell excitation has a number of disadvantages, including low resolution of
excitation even by a relatively small single electrode due to the possible simultaneous stimulation of
several closely spaced neurons. In addition, placing the electrodes in living tissue results in impairment of
its integrity and normal function. Moreover, the body defense system can trigger an immune response
and allergic reaction if the tissue has been in direct contact with a foreign body (electrode) for an
extended period of time. The contactless methods of the nerve cell excitation by electromagnetic waves,
which have been intensely developed in recent years [4–14], are free of such drawbacks. However, they
require increased selectivity of stimulation of nerve tissue, which makes it necessary to solve the problem
of the point (localized) action of an electromagnetic field excited by the system of sources on the nerve
fiber. During such a stimulation, the inner part of a single nerve element (axon) may be heated to a
greater or lesser extent, depending on the intensity of the applied field. Heating causes changes in the
properties of nerve fibers and consequently affects the conditions for excitation or blockage of the nerve
impulse (known as the action potential or depolarization wave) that propagates from the heated part
of the nerve [8, 9]. This mechanism, currently discussed in the literature [9, 15], is related to changes in
the electrical capacitance of the cell membrane during local heating by an electromagnetic field.

Recently, it has been shown that filamentary electromagnetic sources can produce a field that
is localized in the individual elements of a compact nerve fiber [16] or a relatively large nerve [17]
composed of myelinated axons. To improve the excitation efficiency of electrophysiological activity in
individual axons by electromagnetic sources, it is important to know how localized electromagnetic
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waves propagate along the nerve fiber. Analyses of the dispersion properties of eigenmodes supported
by a single axon were made in the cases where a myelin sheath was present [18–21] or absent [22, 23]
on the surface of the axon. Transmission of electromagnetic signals by a single axon in the terahertz
and infrared ranges was also studied, both in the presence and absence of a propagating electrical nerve
impulse [19–23]. It is obvious that the presence of multiple axons in a nerve fiber can significantly
affect the dispersion properties and field structures of electromagnetic waves guided by the nerve
compared to those of a single axon. We note that the guided electromagnetic waves can play an
important role in the process of a cell-to-cell communication, along with the well-known electrochemical
signals [18, 19]. Despite the importance of this problem, we are not aware of any works that provide
a rigorous electromagnetic approach to studying the properties of eigenmodes guided by a nerve fiber
consisting of multiple myelinated axons.

It is the purpose of this work to study the propagation of electromagnetic waves in the optical and
infrared ranges along a compact nerve fiber consisting of several axially homogeneous myelinated axons.

Our article is organized as follows. In Section 2, we formulate the problem and give the theoretical
background. In Section 3, we discuss the propagation of eigenmodes along a nerve fiber and compare
the dispersion properties of the modes of such a nerve with those of waves guided by a single axon.
Section 4 presents the field structures of eigenmodes guided by a nerve fiber and a single axon.
Finally, in Section 5, we draw our conclusions and present suggestions for future work. Some auxiliary
mathematical expressions are given in the appendix.

2. FORMULATION OF THE PROBLEM AND BASIC EQUATIONS

Consider a nerve fiber consisting of tightly packed, parallel identical myelinated axons. We represent
each axon as an infinitely long cylinder with the inner region of radius a1 and the region filled with
myelin (myelin sheath), which is located between cylindrical surfaces with the radii a1 and a2 (a1 < a2),
as shown in Fig. 1(a). It is assumed that the myelin sheath is axially uniform. Such an assumption
is acceptable because of the very small lengths of unmyelinated segments (nodes of Ranvier) of a real
axon compared to the lengths of myelinated segments. All axons are immersed in a homogeneous outer
medium. Let the relative dielectric permittivities of the outer and inner regions of each axon be equal to
ε1 and ε3, respectively. Since these regions are predominantly filled with water, we can put ε1 = ε3 = εw,
where εw is the complex dielectric permittivity of water, which can be obtained from the experimental
data [24]. The myelin sheath is considered as a continuous medium with the effective relative dielectric
permittivity ε2, which can be written as (see [16, 25, 26] for details)

ε2 = [εw(DI +DO) + 2εlcDB + εpDp] /DΣ. (1)
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Figure 1. (a) Geometry of the problem and (b) the structure of the bilayer membranes of the myelin
sheath according to [25].
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Here, εlc is the dielectric permittivity of a medium consisting of proteolipid proteins (PLPs) and lipids;
εp is the dielectric permittivity of myelin basic protein (MBP); DI is the cytoplasm thickness; DO is
the thickness of the extracellular water gap; DB is the thickness of the lipid bilayer; Dp is the effective
protein thickness, and DΣ = 2DB + Dp + DI + DO [see Fig. 1(b)]. Magnetic permeabilities of the
considered media are equal to that of free space.

In a medium with the relative dielectric permittivity ε, the time-harmonic Maxwell equations for
an electromagnetic field, with exp(iωt) time dependence dropped, have the form

∇×E = −iωµ0H, ∇×H = iωϵ0εE, (2)

where ϵ0 and µ0 are the permittivity and permeability of free space, respectively. Let the symbol α
denote the individual axon, so that we can introduce a cylindrical coordinate system (ρα, ϕα, zα) for
the αth axon. Then the longitudinal components of the wave field in the coordinate system of the αth
axon can be represented in terms of azimuthal harmonics as[

Ez;α(rα)
Hz;α(rα)

]
=

∞∑
m=−∞

[
Ez;α,m(ρα, p)
Hz;α,m(ρα, p)

]
exp(−imϕα−ik0pz), (3)

where m is the azimuthal index (m = 0,±1,±2, . . . ), k0 the free-space wave number, and p the
normalized (to k0) longitudinal wave number. The functions Ez;α,m(ρα, p) and Hz;α,m(ρα, p) satisfy
the equations

L̂α,mEz;α,m=0, L̂α,mHz;α,m=0, (4)

where

L̂α,m =
∂2

∂ρ2α
+

1

ρα

∂

∂ρα
− m2

ρ2α
+ k20q

2
k, k = 1, 2, 3,

and qk =
(
εk − p2

)1/2
denotes the transverse wave number in the kth region of the axon. The radial

and azimuthal components of the electric and magnetic fields can be expressed via the longitudinal
components as

Eρ;α,m = −A

(
ip
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Hz;α,m
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m
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)
,

(5)

where A = [k0(εk − p2)]−1 and Z0 = (µ0/ϵ0)
1/2 is the impedance of free space.

Azimuthal harmonics of the electric and magnetic fields inside the αth axon are described by the
expressions [

Ez;α,m

Hz;α,m

]
=

[
B

(1)
α,m

Z−1
0 B

(2)
α,m

]
q3Jm(k0q3ρα), ρα ≤ a1,

[
Ez;α,m

Hz;α,m

]
=

2∑
k=1

[
C

(k)
α,m

Z−1
0 C̃

(k)
α,m

]
q2H

(k)
m (k0q2ρα), a1≤ρα≤a2,

(6)

where B
(1,2)
α,m , C

(1,2)
α,m , and C̃

(1,2)
α,m are the amplitude coefficients corresponding to the mth azimuthal

harmonic; Jm is the Bessel function of the first kind of order m; and H
(1)
m and H

(2)
m are the mth-order

Hankel functions of the first and second kinds, respectively.
In the outer medium, the field outside the αth axon can be represented as a superposition of the

field scattered by this axon and the field incident on it from axons with the numbers β ̸= α. Such a
representation in terms of the scattered and incident fields provides a relatively simple way to solve the
problem of determining the field of a particular eigenmode on a nerve fiber.

Azimuthal harmonics of the electric and magnetic fields scattered by the αth axon are represented
in its coordinate system in the form[

E
(sc)
z;α,m

H
(sc)
z;α,m

]
=

[
D

(1)
α,m

Z−1
0 D

(2)
α,m

]
q1H

(2)
m (k0q1ρα), (7)
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where D
(1)
α,m and D

(2)
α,m are the scattering coefficients corresponding to the azimuthal index m. To

determine these coefficients, we represent the total field in the outer medium using a coordinate system
of the αth axon. Employing Graf’s addition theorem for cylindrical functions [27], we recalculate the
azimuthal field harmonics at some observation point P [see Fig. 1(a)] from the coordinate system of the
βth axon to that of the αth axon [27, 28]:

H(2)
n (k0q1ρβ) exp(−inϕβ) =

∞∑
m=−∞

Jm (k0q1ρα)H
(2)
m−n (k0q1ρβα) exp [i(m−n)ϕβα−imϕα] . (8)

Here, ϕβα is the azimuthal coordinate of the axis of the βth axon in the coordinate system of the αth
axon, and ρβα is the distance between the axes of these axons. In Eq. (8), the condition ρα < ρβα is
assumed to be fulfilled, which is ensured by using Eq. (8) for representing the incident field only at the
outer boundary of the axon. Then the azimuthal harmonics of the total field components outside the
axons in the coordinate system of the αth axon take the form

Ez;α,m = E(sc)
z;α,m + E(ex)

z;α,m, Hz;α,m = H(sc)
z;α,m +H(ex)

z;α,m, (9)

where
E(ex)

z;α,m = q1Eα,mJm (k0q1ρα) , H(ex)
z;α,m = q1Hα,mJm (k0q1ρα) .

Here, [
Eα,m
Hα,m

]
=

Na∑
β ̸=α

∞∑
n=−∞

[
D

(1)
β,n

Z−1
0 D

(2)
β,n

]
H

(2)
m−n (k0q1ρβα) exp [i(m− n)ϕβα] , (10)

where Na is the total number of nerve fiber axons.

The coefficients B
(1,2)
α,m , C

(1,2)
α,m , C̃

(1,2)
α,m , and D

(1,2)
α,m are determined using the boundary conditions for

the tangential field components at the outer and inner surfaces of the myelin sheath of each axon.
Based on the scattering matrix method [28], which is commonly employed for solving wave propagation
problems in photonic crystals [29, 30], and making use of the boundary conditions at ρα = a1 and

ρα = a2 for the αth axon, we arrive at the following system of equations for the coefficients D
(1)
α,m and

D
(2)
α,m:

D(1)
α,m = See

mEα,m + Seh
m Hα,m, D(2)

α,m = She
m Eα,m + Shh

m Hα,m, (11)

where See
m , Seh

m , She
m , and Shh

m are the scattering-matrix elements for a single axon (see the appendix).
The application of Eq. (11) to each axon for the azimuthal indices |m| ≤ M gives a system of

2Na(2M + 1) homogeneous equations for the scattering coefficients D
(1)
α,m and D

(2)
α,m, where M is the

number of the highest-order azimuthal harmonic taken into account in the calculations. The summation
over n in Eq. (10) is performed from −M to M . The choice of the value of M is determined by the
specified calculation accuracy. A dispersion relation which allows us to obtain the longitudinal wave
numbers p of eigenmodes supported by the nerve fiber follows from the requirement that the determinant
of this system is zero. The longitudinal wave numbers can be found as roots of the dispersion relation
and are written as p = p′ − ip′′ for a lossy medium. Here, p′ and p′′ are the propagation and the
attenuation constants, respectively. It will be ascertained in what follows that the quantity p′′ is
determined predominantly by the imaginary part of εw.

To obtain the field structure of the mode with the known longitudinal wave number p, one of

the coefficients D
(1)
α,m and D

(2)
α,m can be chosen arbitrarily without loss of generality. The subscripts

and superscript of such a coefficient will be denoted with a tilde below. For definiteness, we put the

coefficient D
(k̃)
α̃,m̃ equal to unity and choose the values of k̃, α̃, and m̃ arbitrarily. This procedure yields

the system of 2Na(2M + 1) − 1 inhomogeneous linear equations for the coefficients D
(1)
α,m and D

(2)
α,m,

excepting D
(k̃)
α̃,m̃. The right-hand sides of the equations of this linear system are formed with elements

that are multiplied by the coefficient D
(k̃)
α̃,m̃. Note that certain modes with different field structures can

correspond to the same quantity p. The number of such different field structures for the same p value
determines the degree of degeneracy of the corresponding eigenmodes.
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In the case of a nerve consisting of a single axon, the system of linear equations is simplified to
independent systems of linear equations. Each of such systems corresponds to a certain azimuthal index.
Thus, a particular eigenmode of a single axon is characterized by a certain azimuthal number m and a
radial index n, which is determined by the number of field oscillations along the radial coordinate (see,
e.g., [31]).

3. DISPERSION PROPERTIES OF MODES

We now discuss dispersion properties of the eigenmodes guided by both a single axon and a nerve
fiber consisting of three tightly packed axons. The effective dielectric permittivity of myelin is mainly
determined by the sizes and dielectric properties of its molecular structures. For calculations, we use
the following values of the characteristic parameters of the myelin sheath: DB = 4.5 nm, Dp = 1nm,
DI = 1nm, DO = 3.5 nm, a1 = 1.5µm, and a2 = 2.5µm. We consider two cases where the permittivity
of myelin is determined by the values εlc = 3 and εp = 4 or εlc = 2 and εp = 3. To specify the maximum
number 2M + 1 of the azimuthal harmonics that are taken into account, we used the value M = 5 in
all calculations.

To show numerical results, we will present the longitudinal wave numbers p of eigenmodes as
functions of the free-space wavelength, which is given as λ = 2πc/ω, where c is the speed of light in free
space.

Figure 2 shows the dependences p′(λ) and log p′′(λ) for eigenmodes with the azimuthal indices
m = 0, 1, 2, and 3 of a single axon for different values of the quantities εlc and εp. Namely, Figs. 2(a)
and 2(b) present p′(λ) and log p′′(λ), respectively, for εlc = 3 and εp = 4, whereas Figs. 2(c) and 2(d)
show the behavior of the respective quantities for εlc = 2 and εp = 3. We note that the propagation
constant of each localized mode lies in the interval P ′

min < p′ < P ′
max, where P ′

min = Re
√
εw and
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Figure 2. Dispersion curves of the single-axon eigenmodes with the azimuthal indices m = 0, 1, 2, and
3. Dependences (a) p′(λ) and (b) p′′(λ) for εlc = 3 and εp = 4 and dependences (c) p′(λ) and (d) p′′(λ)
for εlc = 2 and εp = 3.
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P ′
max = Re

√
ε2 are shown as functions of λ by the solid green lines in Figs. 2(a) and 2(c) and similar

figures onwards. As the wavelength decreases to the low boundary of the optical range, the higher-
order eigenmodes appear. With increasing wavelength, the curves p′(λ) for the higher-order eigenmodes
reach the lower boundary P ′

min, and the corresponding modes cease to exist. As a result, only the
lowest dipole eigenmode with m = 1 remains to exist for relatively long wavelengths, up to the infrared
range. Although nonsymmetric waves with m = 1 can exist in a wide wavelength interval, they have
not received sufficient attention in previous works [18–21], in which the propagation of axisymmetric
eigenmodes of a single axon was mostly considered.

In the wavelength range from 2.9µm to 3.1µm, some eigenmodes can be backward. For such waves,
the directions of energy flow and wavefront propagation are opposite. These eigenmodes can be readily
found in Figs. 2(a) and 2(c) if we take into account that their group velocity vg = c(p′ + ω∂p′/∂ω)−1 is
negative for positive p′.

It can be seen in Figs. 2(a) and 2(c) that the dispersion curves form separate groups, which include
modes with different azimuthal indices and the same radial indices. This is especially evident at smaller
values of λ. The modes of each group are divided into pairs such that the modes of a particular pair
have the same azimuthal index but different polarizations (for example, in Fig. 2(a) there are eight
modes in each group). In each pair for m ̸= 0, the field of one mode is predominantly determined by
the longitudinal magnetic-field component (HE modes), whereas the field of the other mode, by the
longitudinal electric-field component (EH modes).

The attenuation constants of the single-axon eigenmodes are shown in Figs. 2(b) and 2(d). As
expected, the values of these quantities lie in the interval P ′′

min < p′′ < P ′′
max, where the quantities

P ′′
min = −Im

√
ε2 > 0 and P ′′

max = −Im
√
εw > 0 are determined by the imaginary parts of the dielectric

(a) (b)

(c) (d)

Figure 3. Dispersion curves of the eigenmodes of a nerve fiber consisting of three axons. Dependences
(a) p′(λ) and (b) p′′(λ) for εlc = 3 and εp = 4 and dependences (c) p′(λ) and (d) p′′(λ) for εlc = 2 and
εp = 3.



Progress In Electromagnetics Research C, Vol. 132, 2023 43

permittivities of myelin and water, respectively. The quantities P ′′
min and P ′′

max as functions of the
wavelength λ are also indicated by the solid green lines in the figures. Note that in almost the
entire wavelength range presented in the figures, the eigenmodes are weakly attenuated, except for
local maxima of p′′(λ) corresponding to the frequencies of water resonance absorption. The maximum
absorption takes place at λ ≃ 3µm.

It is worth noting that for a smaller optical density of myelin, when εlc = 2 and εp = 3, attenuation
of the modes propagating along the axon [see Fig. 2(d)] is somewhat greater because of a weaker
localization of their fields. It has also been found numerically that the lowest nonsymmetric eigenmode
turns out to be propagating at shorter wavelengths than those for the optically denser myelin considered
above.

Figure 3 shows the dependences p′(λ) and p′′(λ) for eigenmodes of a nerve fiber consisting of three
tightly packed axons for the previously chosen values of εlc and εp. The dispersion curves of the modes
of such a nerve fiber differ significantly from those for the modes of a single axon. This is especially
clearly seen when comparing the dispersion curves of the lowest modes of a single axon and a nerve
fiber. In addition, the number of the dispersion curves for modes of a nerve fiber is less than that for
an axon. This can be explained by degeneracy or near-degeneracy of some modes of the fiber. For
example, the dispersion curves of the two different lowest eigenmodes are located so closely in Figs 3(a)
and 3(b) that they cannot be seen as separate ones. Therefore, the total number of modes supported
by the nerve fiber is actually no less than that of modes supported by individual axons.

The presented results also demonstrate that the dependences p′(λ) and p′′(λ) for eigenmodes of
a nerve fiber consisting of tightly packed axons are fairly sensitive to variations in the values of the
parameters εlc and εp. For example, the behavior of the dispersion curves and their total number in
Figs. 3(c) and 3(d), which are plotted for εlc = 2 and εp = 3, differ significantly from those in the case
presented in Figs. 3(a) and 3(b) for εlc = 3 and εp = 4.

4. FIELD STRUCTURES OF MODES

Let us analyze the eigenmode fields for a single axon and the nerve fiber. To this end, we present
the spatial distributions of these fields in relative units. Figs. 4, 5, and 6 show the distributions of the
longitudinal electric and magnetic fields in the eigenmodes of a singe axon at λ = 1µm form = 0, m = 1,
and m = 2, respectively. It can be seen that the fields of these modes are concentrated mainly near
the inner and outer boundaries of the myelin sheath of the axon. The number of the field oscillations
along the azimuthal coordinate increases with increasing azimuthal index of the mode. All these modes
belong to the same group, which is characterized by the lowest number (n = 1) of the field oscillations
along the radial coordinate. Note that the field structures of eigenmodes with azimuthal indices m = 0
and m = 1 in Figs. 4 and 5, respectively, are in agreement with the results reported earlier by other
authors for such modes [18–21].
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It follows from the numerical calculations that at the given value of λ, the modes with greater
propagation constants have smaller attenuation constants. This can be explained by the fact that the
fields of modes with the higher propagation constants are predominantly localized in the myelin sheath,
which is characterized by a weaker absorption of electromagnetic energy. To illustrate this fact, the field
structure of the m = 1 eigenmode with the radial index n = 2 is presented in Fig. 7 for the comparison
with Fig. 5.
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Figure 8 shows the field distributions of the lowest mode of the above-described nerve fiber at
λ = 1µm. It is clearly seen that the field of this mode, which has the highest propagation constant at
the chosen value of λ, is characterized by the third-order rotational symmetry. Note that a similar field
structure obtained by the mutual replacement of the electric and magnetic fields (see Fig. 9) is observed
in a mode with the propagation constant that is close to the propagation constant of the mode whose
field is shown in Fig. 8.
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Figure 8. Snapshots of the (a) Ez and (b) Hz components in the rotationally symmetric hybrid
eigenmode of a nerve fiber at λ = 1µm, with p = 1.6 − i8.46 × 10−7, and the distributions of the
corresponding magnitudes (c) |Ez| and (d) |Hz|. Same parameters as in Fig. 4.
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Figure 9. Snapshots of the (a) Ez and (b) Hz components in the rotationally symmetric hybrid
eigenmode of a nerve fiber at λ = 1µm, with p = 1.596 − i8.93 × 10−7, and the distributions of the
corresponding magnitudes (c) |Ez| and (d) |Hz|. Same parameters as in Fig. 4.
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In addition to the modes with rotational symmetry, the nerve fiber can support the propagation
of waves lacking this symmetry. Figs. 10 and 11 show the structures of the electric and magnetic fields
of two such modes, which are degenerate, i.e., have identical longitudinal wave numbers but different
field structures. Note that the field distributions in Fig. 11 can be obtained from those in Fig. 10 by
rotation by 120 degrees relative to the symmetry axis of the nerve fiber.
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Figure 11. Snapshots of the (a) Ez and (b) Hz components in the rotationally nonsymmetric hybrid
eigenmode of a nerve at λ = 1µm, with p = 1.395 − i1.39 × 10−6, and the distributions of the
corresponding magnitudes (c) |Ez| and (d) |Hz|. The mode shown in this figure is degenerate with
that presented in Fig. 10. Same parameters as in Fig. 4.

It is also worth mentioning that the results obtained for a nerve fiber consisting of three axons were
verified by increasing the distance between the axons. In this case, the field distributions and dispersion
characteristics of the fiber modes gradually transformed to those of individual axons, as expected. We
do not present the corresponding results here for the sake of brevity.

5. CONCLUSION

In this work, the properties of the guided propagation of electromagnetic waves along a single idealized
myelinated axon and a nerve fiber consisting of such axons have been studied in the optical and
infrared ranges. The fundamental possibility of the existence of localized, weakly attenuated modes
in structures of this type has been demonstrated. Frequency dependences of the propagation and
attenuation constants of eigenmodes supported by both a single axon and a nerve fiber, as well as
their field structures, have been found numerically for the indicated ranges. It is confirmed that the
propagation constants of the eigenmodes lie between the refractive indices of the media in the outer
and myelin regions of the axons. Modes with larger propagation constants were found to have smaller
attenuation constants due to better localization of their fields in the myelin sheath. This can be
explained by the weak energy absorption in myelin compared with the outer and inner media, which
consist predominantly of water. It has also been established numerically that when the optical density
of the myelin decreases, the dispersion properties of eigenmodes do not change significantly, but this
leads to a decrease in the number of modes supported by the nerve fiber. Moreover, the differences
between the dispersion properties and field structures of the eigenmodes guided by the considered nerve
fiber and a single axon have been revealed. It has been shown that the nerve fiber supports the guided
propagation of modes that have rotational symmetry and modes that have no such symmetry. The
latter, in turn, form sets of modes with polarization degeneracy.

The results obtained may be useful in the development of new contactless methods for stimulating
nerve fibers and application of electromagnetic waves guided by a set of axons as a part of the
mechanism of a cell-to-cell communication. The approach of this work can also be extended to the case
where the nerve fiber is stimulated by a nonmonochromatic signal. Future work should be primarily
focused on studying the excitation of electromagnetic waves by given sources, both monochromatic and
nonmonochromatic, in the presence of a nerve fiber, along with the analysis of the wave propagation in
a nerve fiber that consists of myelinated axons with periodic gaps in the myelin sheath.
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APPENDIX A. OBTAINING THE SCATTERING MATRIX OF A SINGLE
MYELINATED AXON

If a cylindrical wave with the azimuthal index m is incident on a single axon, the coefficients of the
field are found from a system of linear equations which are derived using the boundary conditions at
ρα = a1 and ρα = a2. In matrix form, this system of equations is written as follows:

Ĵm 0 −Ĥ
(1)
m,1 −Ĥ

(2)
m,1 0 0 0 0

0 Ĵm 0 0 −Ĥ
(1)
m,1 −Ĥ

(2)
m,1 0 0

−J̃m J̊m H̃
(1)
m,1 H̃

(2)
m,1 −H̊

(1)
m,1 −H̊

(2)
m,1 0 0

−ε3J̊m −J̃m ε2H̊
(1)
m,1 ε2H̊

(2)
m,1 H̃

(1)
m H̃

(2)
m,1 0 0

0 0 −Ĥ
(1)
m,2 −Ĥ

(2)
m,2 0 0 Ĥ

(2)
m 0

0 0 0 0 −Ĥ
(1)
m,2 −Ĥ

(2)
m,2 0 Ĥ

(2)
m

0 0 H̃
(1)
m,2 H̃

(2)
m,2 −H̊

(1)
m,2 −H̊

(2)
m,2 −H̃

(2)
m H̊

(2)
m

0 0 ε2H̊
(1)
m,2 ε2H̊

(2)
m,2 H̃

(1)
m,2 H̃

(2)
m,2 −ε1H̊

(2)
m −H̃

(2)
m





B(1)
m

B(2)
m

C(1)
m

C(2)
m

C̃(1)
m

C̃(2)
m

D(1)
m

D(2)
m


=A(1)

m I(1)+A(2)
m I(2),

I(1) =
(

0 0 0 0 −q1Jm (Q1) 0
pm

Q1
Jm(Q1) iε1J

′
m(Q1)

)T

,

I(2) =
(

0 0 0 0 0 −q1Jm (Q1) −iJ ′
m(Q1)

pm

Q1
Jm(Q1)

)T

.

(A1)

Here,

Ĵm = q3Jm(Q3), Ĥ(k)
m,γ = q2H

(k)
m (Q̃γ), Ĥ(2)

m = q1H
(2)
m (Q1),

J̃m =
pm

Q3
Jm(Q3), H̃(k)

m,γ =
pm

Q̃γ

H(k)
m (Q̃γ), H̃(2)

m =
pm

Q1
H(2)

m (Q1),

J̊m = iJ ′
m (Q3), H̊(k)

m,γ = iH(k)
m

′
(Q̃γ), H̊(2)

m = iH(2)
m

′
(Q1),

(A2)

where γ = 1, 2, Q1 = k0q1a2, Q̃γ = k0q2aγ , Q3 = k0q3a1, and the superscript T stands for the
transposition operation. In Eq. (A1), the prime indicates the derivative with respect to the argument.

Upon finding the field coefficients B(1,2)
α,m , C(1,2)

α,m , C̃(1,2)
α,m , and D(1,2)

α,m from the system in Eq. (A1) with
allowance for Eq. (A2), we represent the scattering-matrix elements See

m , She
m , Seh

m , and Shh
m in Eq. (11)

as See
m = D(1)

m and She
m = D(2)

m under the conditions A(1)
m =1 and A(2)

m =0, and as Seh
m = D(1)

m and

Shh
m = D(2)

m under the conditions A(1)
m =0 and A(2)

m =1.
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