Vol. 131
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-03-23
Scattering of Electromagnetic Waves by a Multi-Element System of Pass-through Resonators in a Rectangular Waveguide
By
Progress In Electromagnetics Research C, Vol. 131, 135-143, 2023
Abstract
The problem of electromagnetic waves diffraction by a system of pass-through resonators in a rectangular waveguide coupling by diaphragms with resonant slots was solved by the generalized method of induced magnetomotive forces (MMFs). A distinctive feature of the solution is characterized by using approximating functions defining magnetic currents in the slots obtained from solutions of current integral equations by the asymptotic averaging method. Multi-parameter studies of electrodynamic characteristics of such structures have been carried out. The comparison of numerical results with experimental data is presented.
Citation
Mikhail Nesterenko, Viktor A. Katrich, Svetlana V. Pshenichnaya, and Victor I. Kijko, "Scattering of Electromagnetic Waves by a Multi-Element System of Pass-through Resonators in a Rectangular Waveguide," Progress In Electromagnetics Research C, Vol. 131, 135-143, 2023.
doi:10.2528/PIERC23020903
References

1. Southworth, G. C., Principles and Applications of Waveguide Transmission, New York, 1950.
doi:10.1002/j.1538-7305.1950.tb02348.x

2. Lewin, L., Advanced Theory of Waveguides, Iliffe & Sons, London, 1951.

3. Reingold, I., J. L. Carter, and K. Garoff, "Single- and multi-iris resonant structures," Proc. IRE, Vol. 40, 861-865, 1952.
doi:10.1109/JRPROC.1952.273855

4. Chen, T. S., "Waveguide resonant-iris filters with very wide passband and stopbands," Int. J. Electronics, Vol. 21, 401-424, 1966.
doi:10.1080/00207216608937922

5. Chen, T. S., "Characteristics of waveguide resonant-iris filters," IEEE Trans. Microw. Theory Techn., Vol. 15, 260-262, 1967.
doi:10.1109/TMTT.1967.1126437

6. Patzelt, H. and F. Arndt, "Double-plane steps in rectangular waveguides and their application for transformers, irises, and filters," IEEE Trans. Microw. Theory Techn., Vol. 30, 771-776, 1982.
doi:10.1109/TMTT.1982.1131135

7. Bornemann, J. and R. Vahldieck, "Characterization of a class of waveguide discontinuities using a modified TExmn mode approach," IEEE Trans. Microw. Theory Techn., Vol. 38, 1816-1822, 1990.
doi:10.1109/22.64561

8. Yang, R. and A. S. Omar, "Analysis of this inclined rectangular aperture with arbitrary location in rectangular waveguide," IEEE Trans. Microw. Theory Techn., Vol. 41, 1461-1463, 1993.
doi:10.1109/22.241690

9. Beyer, R. and F. Arndt, "Efficient modal analysis of waveguide filters including the orthogonal mode coupling elements by an MM/FE method," IEEE Microw. Guided Wave Lett., Vol. 5, 9-11, 1995.
doi:10.1109/75.382376

10. Kirilenko, A. A. and L. P. Mospan, "Reflection resonances and natural oscillations of two-aperture iris in rectangular waveguide," IEEE Trans. Microw. Theory Techn., Vol. 48, 1419-1421, 2000.
doi:10.1109/22.859492

11. Leal-Sevillano, C. A., J. R. Montejo-Garai, J. A. Ruiz-Cruz, and J. M. Rebollar, "Wideband equivalent circuit for multi-aperture multi-resonant waveguide irises," IEEE Trans. Microw. Theory Techn., Vol. 64, 724-732, 2016.
doi:10.1109/TMTT.2016.2520462

12. Tang, Y., L. Zhu, B. Li, Y. Bo, and L. Xu, "Broadband band-stop waveguide filters with T-shape diaphragm," Proc. Int. Conf. Microwave and Millimeter Wave Technology, Chengdu, China, 2018.

13. Rodríguez-Berral, R., F. Mesa, and F. Medina, "Resonant modes of a waveguide iris discontinuity: interpretation in terms of canonical circuits," IEEE Trans. Microw. Theory Techn., Vol. 66, 2059-2069, 2018.
doi:10.1109/TMTT.2018.2804914

14. Bulashenko, A., S. Piltyay, Y. Kalinichenko, and O. Bulashenko, "Mathematical modeling of iris-post sections for waveguide filters, phase shifters and polarizers," Proc. IEEE 2nd Int. Conf. Advanced Trends in Information Theory, Kyiv, Ukraine, 2020.

15. Yi, D., M.-C. Tang, M. Li, Z.-H. Zhang, X.-C. Wei, and E.-P. Li, "Low-profile metasurface-based diaphragm for compartment shielding of microwave cavities," IEEE Trans. Microw. Theory Techn., Vol. 69, 2048-2059, 2021.
doi:10.1109/TMTT.2021.3057641

16. Rozzi, T. E. and M. S. Navarro, "Propagation in a rectangular waveguide periodically loaded with resonant irises," Proc. IEEE-MTT-S Int. Microwave Symp., Cherry Hill, NJ, USA, 1976.

17. Cui, Z.-T. and S.-X. Li, "Design of microwave filter with resonant irises of resonant windows at different location," Proc. IEEE Int. Conf. Microwave Technology & Computational Electromagnetics, Beijing, China, 2011.

18. Arndt, F., R. Beyer, J. M. Reiter, T. Sieverding, and T. Wolf, "Automated design of waveguide components using hybrid mode-matching/numerical EM building-blocks in optimization-oriented CAD frameworks-state of the art and recent advances," IEEE Trans. Microw. Theory Techn., Vol. 45, 747-760, 1997.
doi:10.1109/22.575597

19. Amari, S., J. Bornemann, and R. Vahldieck, "Fast and accurate analysis of waveguide filters by the coupled integral-equations technique," IEEE Trans. Microw. Theory Techn., Vol. 45, 1611-1618, 1997.
doi:10.1109/22.622929

20. Peverini, O. A., R. Tascone, M. Baralis, G. Virone, D. Trinchero, and R. Orta, "Reduced-order optimized mode-matching cad of microwave waveguide components," IEEE Trans. Microw. Theory Techn., Vol. 52, 311-318, 2004.
doi:10.1109/TMTT.2003.820893

21. Gong, L., K. Y. Chan, and R. Ramer, "A four-state iris waveguide bandpass filter with switchable irises," Proc. IEEE MTT-S Int. Microwave Symp., Honololu, HI, USA, 2017.

22. Chan, K. Y., R. Ramer, and R. R. Mansour, "A switchable iris bandpass filter using RF MEMS switchable planar resonators," IEEE Microwave Wireless Components Letters, Vol. 27, 34-36, 2017.
doi:10.1109/LMWC.2016.2629960

23. Nesterenko, M. V., V. A. Katrich, Yu. M. Penkin, and S. L. Berdnik, Analytical and Hybrid Methods in Theory of Slot-Hole Coupling of Electrodynamic Volumes, Springer Science + Business Media, New York, 2008.
doi:10.1007/978-0-387-76362-0

24. Nesterenko, M. V., V. A. Katrich, and Yu. M. Penkin, "Diffraction of H10-wave by stepped rectangular waveguide coupling with impedance slot iris," Telecommun. and Radio Eng., Vol. 63, 569-588, 2005.
doi:10.1615/TelecomRadEng.v63.i7.10

25. Warne, L. K., "Eddy current power dissipation at sharp corners: closely spaced rectangular conductors," Journal of Electromagnetic Waves and Applications, Vol. 9, 1441-1458, 1995.
doi:10.1163/156939395X00154

26. Katrich, V. A., M. V. Nesterenko, and N. A. Khizhnyak, "Asymptotic solution of integral equation for magnetic current in slot radiators and coupling apertures," Telecommun. and Radio Eng., Vol. 63, 89-107, 2005.
doi:10.1615/TelecomRadEng.v63.i2.10