Vol. 134
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-07-03
An Artificial Neural Network Based Target Angle Estimation Technique for FMCW MIMO Radars
By
Progress In Electromagnetics Research C, Vol. 134, 119-130, 2023
Abstract
In this paper, an artificial neural network (ANN) based approach is proposed for the estimation of the target angle using Multiple Input Multiple Output (MIMO) radars operating in Frequency Modulated Continuous Wave(FMCW). The proposed technique operates in two stages, with the first stage being the formation of the range profile at each MIMO element via Discrete Fourier Transform (DFT) and the second stage being the estimation of the target azimuth angle via an artificial neural network. The range profile formed in the first stage is fed to the second stage as a single snapshot angle measurement. The performance of the proposed technique is apprised with other existing methods under different Signal-to-Noise Ratio (SNR) conditions and measurement model uncertainties. The simulations performed show that the learning capability of the model strongly hinges on SNR conditions, and the learning process is ameliorated as SNR in training data increases as anticipated. Under low SNR conditions, the proposed technique performs better than other techniques in terms of Mean Square Error (MSE). We have also shown that our solution remains unaffected by the model uncertainties as it fully relies on the calibration data, while the performance of the model-based angle estimation techniques dramatically degrades as the uncertainty in the underlying model grows.
Citation
Kudret Akçapınar, Naime Özben Önhon, and Özgür Gürbüz, "An Artificial Neural Network Based Target Angle Estimation Technique for FMCW MIMO Radars," Progress In Electromagnetics Research C, Vol. 134, 119-130, 2023.
doi:10.2528/PIERC23012305
References

1. Wang, S. and R. Herschel, "Fast 3D-CFAR for drone detection with MIMO radars," 2021 18th European Radar Conference (EuRAD), 209-212, 2022.
doi:10.23919/EuRAD50154.2022.9784486

2. Akcapinar, K. and S. Baykut, "CM-CFAR parameter learning based square-law detector for foreign object debris radar," 2018 15th European Radar Conference (EuRAD), 421-424, 2018.
doi:10.23919/EuRAD.2018.8546514

3. Zankl, D., S. Schuster, R. Feger, and A. Stelzer, "What a Blast!: A massive MIMO radar system for monitoring the surface in steel industry blast furnaces," IEEE Microwave Magazine, Vol. 18, No. 6, 52-69, Sept.-Oct. 2017.
doi:10.1109/MMM.2017.2711998

4. Li, J. and P. Stoica, "MIMO radar with colocated antennas," IEEE Signal Processing Magazine, Vol. 24, No. 5, 106-114, Sept. 2007.
doi:10.1109/MSP.2007.904812

5. Hassanien, A., M. G. Amin, Y. D. Zhang, and F. Ahmad, "High-resolution single-snapshot DOA estimation in MIMO radar with colocated antennas," 2015 IEEE Radar Conference (RadarCon), 1134-1138, 2015.
doi:10.1109/RADAR.2015.7131164

6. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 37, No. 7, 984-995, Jul. 1989.
doi:10.1109/29.32276

7. Schmidt, R., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 3, 276-280, Mar. 1986.
doi:10.1109/TAP.1986.1143830

8. Oumar, O. A., M. F. Siyau, and T. P. Sattar, "Comparison between MUSIC and ESPRIT direction of arrival estimation algorithms for wireless communication systems," The First International Conference on Future Generation Communication Technologies, 99-103, 2012.
doi:10.1109/FGCT.2012.6476563

9. Yu, Y., A. P. Petropulu, and H. V. Poor, "MIMO radar using compressive sampling," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, No. 1, 146-163, Feb. 2010.
doi:10.1109/JSTSP.2009.2038973

10. Ni, Z., B. Huang, and M. Cao, "Angular positions estimation of spatially extended targets for MIMO radar using complex spatiotemporal sparse Bayesian learning," IEEE Access, Vol. 7, 94473-94480, 2019.
doi:10.1109/ACCESS.2019.2926442

11. Liu, Z. M., C. Zhang, and P. S. Yu, "Direction-of-arrival estimation based on deep neural networks with robustness to array imperfections," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 12, 7315-7327, Dec. 2018.
doi:10.1109/TAP.2018.2874430

12. Huang, H., J. Yang, H. Huang, Y. Song, and G. Gui, "Deep learning for super-resolution channel estimation and DOA estimation based massive MIMO system," IEEE Transactions on Vehicular Technology, Vol. 67, No. 9, 8549-8560, Sept. 2018.
doi:10.1109/TVT.2018.2851783

13. Bialer, O., N. Garnett, and T. Tirer, "Performance advantages of deep neural networks for angle of arrival estimation," ICASSP 2019 --- 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3907-3911, 2019.
doi:10.1109/ICASSP.2019.8682604

14. Zhu, W., M. Zhang, P. Li, and C. Wu, "Two-dimensional DOA estimation via deep ensemble learning," IEEE Access, Vol. 8, 124544-124552, 2020.
doi:10.1109/ACCESS.2020.3005221

15. Ma, Y., Y. Zeng, and S. Sun, "A deep learning based super resolution DoA estimator with single snapshot MIMO radar data," IEEE Transactions on Vehicular Technology, Vol. 71, No. 4, 4142-4155, Apr. 2022.
doi:10.1109/TVT.2022.3151674

16. Li, X., X. Wang, Q. Yang, and S. Fu, "Signal processing for TDM MIMO FMCW millimeter-wave radar sensors," IEEE Access, Vol. 9, 167959-167971, 2021.
doi:10.1109/ACCESS.2021.3137387

17. Al-Sadoon, M. A. G., N. T. Ali, Y. Dama, A. Zuid, S. M. R. Jones, R. A. Abd-Alhameed, and J. M. Noras, "A new low complexity angle of arrival algorithm for 1D and 2D direction estimation in MIMO smart antenna systems," Sensors (Basel), Vol. 17, No. 11, 2631, Nov. 15, 2017.
doi:10.3390/s17112631