1. Lee, J.-F., D.-K. Sun, and Z. J. Cendes, "Full-wave analysis of dielectric waveguides using tangential vector finite elements," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 8, 1262-1271, 1991.
doi:10.1109/22.85399
2. Lee, J.-F., "Finite element analysis of lossy dielectric waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 6, 1025-1031, 1994.
doi:10.1109/22.293572
3. Polstyanko, S. V., R. Dyczij-Edlinger, and J.-F. Lee, "Fast frequency sweep technique for the efficient analysis of dielectric waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 7, 1118-1126, 1997.
doi:10.1109/22.598450
4. Selleri, S., L. Vincetti, A. Cucinotta, and M. Zoboli, "Complex FEM modal solver of optical waveguides with PML boundary conditions," Optical and Quantum Electronics, Vol. 33, No. 4, 359-371, 2001.
doi:10.1023/A:1010886632146
5. Savi, P., I.-L. Gheorma, and R. D. Graglia, "Full-wave high-order FEM model for lossy anisotropic waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 2, 495-500, 2002.
doi:10.1109/22.982229
6. Vardapetyan, L. and L. Demkowicz, "Hp-vector finite element method for the full-wave analysis of waveguides with no spurious modes," Electromagnetics, Vol. 22, No. 5, 419-428, 2002.
doi:10.1080/02726340290084012
7. Vardapetyan, L., L. Demkowicz, and D. Neikirk, "hp-vector finite element method for eigenmode analysis of waveguides," Computer Methods in Applied Mechanics and Engineering, Vol. 192, No. 1-2, 185-201, 2003.
doi:10.1016/S0045-7825(02)00539-X
8. Lee, S.-C., J.-F. Lee, and R. Lee, "Hierarchical vector finite elements for analyzing waveguiding structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 8, 1897-1905, 2003.
doi:10.1109/TMTT.2003.815263
9. Lee, S.-H. and J.-M. Jin, "Application of the tree-cotree splitting for improving matrix conditioning in the full-wave finite-element analysis of high-speed circuits," Microwave and Optical Technology Letters, Vol. 50, No. 6, 1476-1481, 2008.
doi:10.1002/mop.23403
10. Beeckman, J., R. James, F. A. Fernández, W. De Cort, P. J. M. Vanbrabant, and K. Neyts, "Calculation of fully anisotropic liquid crystal waveguide modes," Journal of Lightwave Technology, Vol. 27, No. 17, 3812-3819, 2009.
doi:10.1109/JLT.2009.2016673
11. Liu, N., G. Cai, C. Zhu, Y. Tang, and Q. H. Liu, "The mixed spectral-element method for anisotropic, lossy, and open waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 10, 3094-3102, 2015.
doi:10.1109/TMTT.2015.2472416
12. Liu, J., W. Jiang, N. Liu, and Q. H. Liu, "Mixed spectral-element method for the waveguide problem with Bloch periodic boundary conditions," IEEE Transactions on Electromagnetic Compatibility, Vol. 61, No. 5, 1568-1577, 2018.
doi:10.1109/TEMC.2018.2866023
13. Lin, X., G. Cai, H. Chen, N. Liu, and Q. H. Liu, "Modal analysis of 2-D material-based plasmonic waveguides by mixed spectral element method with equivalent boundary condition," Journal of Lightwave Technology, Vol. 38, No. 14, 3677-3686, 2020.
doi:10.1109/JLT.2020.2980862
14. Jin, J.-M., The Finite Element Method in Electromagnetics, 3rd Ed., John Wiley & Sons, 2015.
15. Lee, S.-H. and J.-M. Jin, "Adaptive solution space projection for fast and robust wideband finite-element simulation of microwave components," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 7, 474-476, 2007.
doi:10.1109/LMWC.2007.899290
16. Zhu, J. and D. Jiao, "A theoretically rigorous full-wave finite-element-based solution of Maxwell's equations from DC to high frequencies," IEEE Transactions on Advanced Packaging, Vol. 33, No. 4, 1043-1050, 2010.
doi:10.1109/TADVP.2010.2057428
17. Chew, W. C., "Vector potential electromagnetics with generalized gauge for inhomogeneous media: Formulation," Progress In Electromagnetics Research, Vol. 149, 69-84, 2014.
doi:10.2528/PIER14060904
18. Ryu, C. J., A. Y. Liu, W. E. I. Sha, and W. C. Chew, "Finite-difference time-domain simulation of the Maxwell-Schrödinger system," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 1, 40-47, 2016.
doi:10.1109/JMMCT.2016.2605378
19. Li, Y.-L., S. Sun, Q. I. Dai, and W. C. Chew, "Finite element implementation of the generalized-Lorenz gauged A-Φ formulation for low-frequency circuit modeling," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 10, 4355-4364, 2016.
doi:10.1109/TAP.2016.2593748
20. Vico, F., M. Ferrando, L. Greengard, and Z. Gimbutas, "The decoupled potential integral equation for time-harmonic electromagnetic scattering," Communications on Pure and Applied Mathematics, Vol. 69, No. 4, 771-812, 2016.
doi:10.1002/cpa.21585
21. Liu, Q. S., S. Sun, and W. C. Chew, "A potential based integral equation method for low-frequency electromagnetic problems," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 3, 1413-1426, 2018.
doi:10.1109/TAP.2018.2794388
22. Roth, T. E. and W. C. Chew, "Development of stable A-Φ time domain integral equations for multiscale electromagnetics," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 3, 255-265, 2018.
doi:10.1109/JMMCT.2018.2889535
23. Roth, T. E. and W. C. Chew, "Lorenz gauge potential-based time domain integral equations for analyzing subwavelength penetrable regions," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 6, 24-34, 2021.
doi:10.1109/JMMCT.2021.3056760
24. Yan, S., "A continuous-discontinuous Galerkin method for electromagnetic simulations based on an all-frequency stable formulation," Progress In Electromagnetics Research M, Vol. 106, 153-165, 2021.
doi:10.2528/PIERM21100412
25. Sharma, S. and P. Triverio, "Electromagnetic modeling of lossy interconnects from DC to high frequencies with a potential-based boundary element formulation," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 8, 3847-3861, 2022.
doi:10.1109/TMTT.2022.3180390
26. Zhang, B., D.-Y. Na, D. Jiao, and W. C. Chew, "An A-Φ formulation solver in electromagnetics based on discrete exterior calculus," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 8, 11-21, 2022.
27. Zhu, Y. and A. C. Cangellaris, Multigrid Finite Element Methods for Electromagnetic Field Modeling, Vol. 28, John Wiley & Sons, 2006.
doi:10.1002/0471786381
28. Jiang, P., G. Zhao, Q. Zhang, and Z. Guan, "Compatible finite element discretization of generalized Lorenz gauged charge-free a formulation with diagonal lumping in frequency and time domains," Progress In Electromagnetics Research M, Vol. 64, 167-179, 2018.
doi:10.2528/PIERM17091803
29. Vico, F., M. Ferrando-Bataller, T. B. Jiménez, and D. Sánchez-Escuderos, "A decoupled charge-current formulation for the scattering of homogeneous lossless dielectrics," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-3, IEEE, 2016.
30. Li, J., X. Fu, and B. Shanker, "Decoupled potential integral equations for electromagnetic scattering from dielectric objects," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1729-1739, 2018.
doi:10.1109/TAP.2018.2883636
31. Jin, J.-M., Theory and Computation of Electromagnetic Fields, John Wiley & Sons, 2011.
32. Stone, M. and P. Goldbart, "Mathematics for Physics: A Guided Tour for Graduate Students," Cambridge University Press, 2009.
33. Stewart, G. W., "A Krylov-Schur algorithm for large eigenproblems," SIAM Journal on Matrix Analysis and Applications, Vol. 23, No. 3, 601-614, 2002.
doi:10.1137/S0895479800371529
34. Grote, M. J. and T. Huckle, "Parallel preconditioning with sparse approximate inverses," SIAM Journal on Scientific Computing, Vol. 18, No. 3, 838-853, 1997.
doi:10.1137/S1064827594276552
15. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2009.