Vol. 131
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-03-23
Theoretical and Numerical Study of Wave Port Boundary Conditions for Lorenz Gauge Potential-Based Finite Element Methods
By
Progress In Electromagnetics Research C, Vol. 131, 119-133, 2023
Abstract
The development of computational electromagnetics methods using potential-based formulations in the Lorenz gauge have been gaining interest as a way to overcome the persistent challenge of low-frequency breakdowns in traditional field-based formulations. Lorenz gauge potential-based finite element methods (FEM) have begun to be explored, but to date have only considered very simple excitations and boundary conditions. In this work, we present a theoretical and numerical study of how the widely used wave port boundary condition can be incorporated into these Lorenz gauge potential-based FEM solvers. In the course of this, we propose a new potential-based FEM approach for analyzing inhomogeneous waveguides that is in the same gauge as the 3D potential-based methods of interest to aid in verifying theoretical claims. We find that this approach has certain null spaces that are unique to the 2D setting it is formulated within that prevent it from overcoming low-frequency breakdown effects in practical applications. However, this method still is valuable for presenting numerical validation of other theoretical predictions made in this work; particularly, that any wave port boundary condition previously developed for field-based methods can be utilized within a 3D Lorenz gauge potential-based FEM solver.
Citation
Thomas E. Roth, and Colin A. Braun, "Theoretical and Numerical Study of Wave Port Boundary Conditions for Lorenz Gauge Potential-Based Finite Element Methods," Progress In Electromagnetics Research C, Vol. 131, 119-133, 2023.
doi:10.2528/PIERC23010607
References

1. Lee, J.-F., D.-K. Sun, and Z. J. Cendes, "Full-wave analysis of dielectric waveguides using tangential vector finite elements," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 8, 1262-1271, 1991.
doi:10.1109/22.85399

2. Lee, J.-F., "Finite element analysis of lossy dielectric waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 6, 1025-1031, 1994.
doi:10.1109/22.293572

3. Polstyanko, S. V., R. Dyczij-Edlinger, and J.-F. Lee, "Fast frequency sweep technique for the efficient analysis of dielectric waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 7, 1118-1126, 1997.
doi:10.1109/22.598450

4. Selleri, S., L. Vincetti, A. Cucinotta, and M. Zoboli, "Complex FEM modal solver of optical waveguides with PML boundary conditions," Optical and Quantum Electronics, Vol. 33, No. 4, 359-371, 2001.
doi:10.1023/A:1010886632146

5. Savi, P., I.-L. Gheorma, and R. D. Graglia, "Full-wave high-order FEM model for lossy anisotropic waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 2, 495-500, 2002.
doi:10.1109/22.982229

6. Vardapetyan, L. and L. Demkowicz, "Hp-vector finite element method for the full-wave analysis of waveguides with no spurious modes," Electromagnetics, Vol. 22, No. 5, 419-428, 2002.
doi:10.1080/02726340290084012

7. Vardapetyan, L., L. Demkowicz, and D. Neikirk, "hp-vector finite element method for eigenmode analysis of waveguides," Computer Methods in Applied Mechanics and Engineering, Vol. 192, No. 1-2, 185-201, 2003.
doi:10.1016/S0045-7825(02)00539-X

8. Lee, S.-C., J.-F. Lee, and R. Lee, "Hierarchical vector finite elements for analyzing waveguiding structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 8, 1897-1905, 2003.
doi:10.1109/TMTT.2003.815263

9. Lee, S.-H. and J.-M. Jin, "Application of the tree-cotree splitting for improving matrix conditioning in the full-wave finite-element analysis of high-speed circuits," Microwave and Optical Technology Letters, Vol. 50, No. 6, 1476-1481, 2008.
doi:10.1002/mop.23403

10. Beeckman, J., R. James, F. A. Fernández, W. De Cort, P. J. M. Vanbrabant, and K. Neyts, "Calculation of fully anisotropic liquid crystal waveguide modes," Journal of Lightwave Technology, Vol. 27, No. 17, 3812-3819, 2009.
doi:10.1109/JLT.2009.2016673

11. Liu, N., G. Cai, C. Zhu, Y. Tang, and Q. H. Liu, "The mixed spectral-element method for anisotropic, lossy, and open waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 10, 3094-3102, 2015.
doi:10.1109/TMTT.2015.2472416

12. Liu, J., W. Jiang, N. Liu, and Q. H. Liu, "Mixed spectral-element method for the waveguide problem with Bloch periodic boundary conditions," IEEE Transactions on Electromagnetic Compatibility, Vol. 61, No. 5, 1568-1577, 2018.
doi:10.1109/TEMC.2018.2866023

13. Lin, X., G. Cai, H. Chen, N. Liu, and Q. H. Liu, "Modal analysis of 2-D material-based plasmonic waveguides by mixed spectral element method with equivalent boundary condition," Journal of Lightwave Technology, Vol. 38, No. 14, 3677-3686, 2020.
doi:10.1109/JLT.2020.2980862

14. Jin, J.-M., The Finite Element Method in Electromagnetics, 3rd Ed., John Wiley & Sons, 2015.

15. Lee, S.-H. and J.-M. Jin, "Adaptive solution space projection for fast and robust wideband finite-element simulation of microwave components," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 7, 474-476, 2007.
doi:10.1109/LMWC.2007.899290

16. Zhu, J. and D. Jiao, "A theoretically rigorous full-wave finite-element-based solution of Maxwell's equations from DC to high frequencies," IEEE Transactions on Advanced Packaging, Vol. 33, No. 4, 1043-1050, 2010.
doi:10.1109/TADVP.2010.2057428

17. Chew, W. C., "Vector potential electromagnetics with generalized gauge for inhomogeneous media: Formulation," Progress In Electromagnetics Research, Vol. 149, 69-84, 2014.
doi:10.2528/PIER14060904

18. Ryu, C. J., A. Y. Liu, W. E. I. Sha, and W. C. Chew, "Finite-difference time-domain simulation of the Maxwell-Schrödinger system," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 1, 40-47, 2016.
doi:10.1109/JMMCT.2016.2605378

19. Li, Y.-L., S. Sun, Q. I. Dai, and W. C. Chew, "Finite element implementation of the generalized-Lorenz gauged A-Φ formulation for low-frequency circuit modeling," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 10, 4355-4364, 2016.
doi:10.1109/TAP.2016.2593748

20. Vico, F., M. Ferrando, L. Greengard, and Z. Gimbutas, "The decoupled potential integral equation for time-harmonic electromagnetic scattering," Communications on Pure and Applied Mathematics, Vol. 69, No. 4, 771-812, 2016.
doi:10.1002/cpa.21585

21. Liu, Q. S., S. Sun, and W. C. Chew, "A potential based integral equation method for low-frequency electromagnetic problems," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 3, 1413-1426, 2018.
doi:10.1109/TAP.2018.2794388

22. Roth, T. E. and W. C. Chew, "Development of stable A-Φ time domain integral equations for multiscale electromagnetics," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 3, 255-265, 2018.
doi:10.1109/JMMCT.2018.2889535

23. Roth, T. E. and W. C. Chew, "Lorenz gauge potential-based time domain integral equations for analyzing subwavelength penetrable regions," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 6, 24-34, 2021.
doi:10.1109/JMMCT.2021.3056760

24. Yan, S., "A continuous-discontinuous Galerkin method for electromagnetic simulations based on an all-frequency stable formulation," Progress In Electromagnetics Research M, Vol. 106, 153-165, 2021.
doi:10.2528/PIERM21100412

25. Sharma, S. and P. Triverio, "Electromagnetic modeling of lossy interconnects from DC to high frequencies with a potential-based boundary element formulation," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 8, 3847-3861, 2022.
doi:10.1109/TMTT.2022.3180390

26. Zhang, B., D.-Y. Na, D. Jiao, and W. C. Chew, "An A-Φ formulation solver in electromagnetics based on discrete exterior calculus," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 8, 11-21, 2022.

27. Zhu, Y. and A. C. Cangellaris, Multigrid Finite Element Methods for Electromagnetic Field Modeling, Vol. 28, John Wiley & Sons, 2006.
doi:10.1002/0471786381

28. Jiang, P., G. Zhao, Q. Zhang, and Z. Guan, "Compatible finite element discretization of generalized Lorenz gauged charge-free a formulation with diagonal lumping in frequency and time domains," Progress In Electromagnetics Research M, Vol. 64, 167-179, 2018.
doi:10.2528/PIERM17091803

29. Vico, F., M. Ferrando-Bataller, T. B. Jiménez, and D. Sánchez-Escuderos, "A decoupled charge-current formulation for the scattering of homogeneous lossless dielectrics," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-3, IEEE, 2016.

30. Li, J., X. Fu, and B. Shanker, "Decoupled potential integral equations for electromagnetic scattering from dielectric objects," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1729-1739, 2018.
doi:10.1109/TAP.2018.2883636

31. Jin, J.-M., Theory and Computation of Electromagnetic Fields, John Wiley & Sons, 2011.

32. Stone, M. and P. Goldbart, "Mathematics for Physics: A Guided Tour for Graduate Students," Cambridge University Press, 2009.

33. Stewart, G. W., "A Krylov-Schur algorithm for large eigenproblems," SIAM Journal on Matrix Analysis and Applications, Vol. 23, No. 3, 601-614, 2002.
doi:10.1137/S0895479800371529

34. Grote, M. J. and T. Huckle, "Parallel preconditioning with sparse approximate inverses," SIAM Journal on Scientific Computing, Vol. 18, No. 3, 838-853, 1997.
doi:10.1137/S1064827594276552

15. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2009.