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Theoretical and Numerical Study of Wave Port Boundary Conditions
for Lorenz Gauge Potential-Based Finite Element Methods

Thomas E. Roth* and Colin A. Braun

Abstract—The development of computational electromagnetics methods using potential-based
formulations in the Lorenz gauge have been gaining interest as a way to overcome the persistent challenge
of low-frequency breakdowns in traditional field-based formulations. Lorenz gauge potential-based finite
element methods (FEM) have begun to be explored, but to date have only considered very simple
excitations and boundary conditions. In this work, we present a theoretical and numerical study of how
the widely used wave port boundary condition can be incorporated into these Lorenz gauge potential-
based FEM solvers. In the course of this, we propose a new potential-based FEM approach for analyzing
inhomogeneous waveguides that is in the same gauge as the 3D potential-based methods of interest to
aid in verifying theoretical claims. We find that this approach has certain null spaces that are unique to
the 2D setting it is formulated within that prevent it from overcoming low-frequency breakdown effects
in practical applications. However, this method still is valuable for presenting numerical validation of
other theoretical predictions made in this work; particularly, that any wave port boundary condition
previously developed for field-based methods can be utilized within a 3D Lorenz gauge potential-based
FEM solver.

1. INTRODUCTION

Analyzing inhomogeneous waveguides to determine their modal propagation constants and field
distributions has a long history in the design of microwave and optical components [1–13], with the
finite element method (FEM) the most popular numerical method used for solving these problems [14].
In these methods, Maxwell’s equations are recast into a suitable eigenvalue problem in the waveguiding
geometry to determine the modal properties. Although these solutions are useful in their own right,
they also form the foundation of implementing wave port boundary conditions in a full 3D FEM
analysis [14, 15]. Wave port boundary conditions are the most accurate excitation and termination for
waveguiding problems in a 3D FEM analysis, and so form an essential component in a general-purpose
FEM analysis suite.

Unfortunately, the low-frequency breakdown that is inherent to traditional field-based FEM solvers
continues to be a problem for these methods. These breakdowns occur when parts of the geometry
being analyzed are significantly smaller than the wavelength being considered [8, 9, 14, 16], which can
be especially prevalent in the analysis of digital or mixed-signal integrated circuits [6, 7]. To tackle the
modeling challenges of these applications, it is necessary to have a robust numerical method that can
seamlessly model problems over a wide range of frequencies and length scales, ideally without resorting
to specialized fixes that only work in specific scenarios.

Potential-based methods are gaining interest as an approach to potentially overcome these modeling
challenges within most computational electromagnetics algorithms [17–26]. There is a long history
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of using different kinds of potential-based formulations that utilize various gauge conditions in FEM
implementations for several purposes (e.g., analyzing waveguides, preconditioning, etc.), with many
examples discussed in [27]. Modern uses of this phrase typically refer to methods targeted at overcoming
the low-frequency breakdown inherent in field-based approaches, and often focus on using some form of
Lorenz gauge condition in the process. To date, FEM implementations within this modern perspective
on potential-based formulations have only considered simple lumped excitations and terminating
boundary conditions [19, 24, 28]. In this work, we theoretically and numerically investigate how wave
port boundary conditions can be used in a full 3D Lorenz gauge potential-based FEM analysis [19] to
improve the practicality of these solvers. Our theoretical analysis proves that traditional field-based
wave port boundary conditions can be used directly in 3D Lorenz gauge potential-based FEM solvers.
To aid in numerically validating this, we introduce a potential-based FEM approach for analyzing
inhomogeneous waveguides that is formulated in the same Lorenz gauge as the 3D potential-based
FEM solver of interest to compare properties of the wave port eigenvalue problems between Lorenz
gauge potential- and field-based methods. We also analyze a 3D geometry using a 3D Lorenz gauge
potential-based FEM solver that utilizes a traditional field-based wave port boundary condition and
show that the results match that of a conventional 3D field-based FEM analysis.

The remainder of this work is organized as follows. In Section 2, we analyze the spectral properties
of the field- and Lorenz gauge potential-based eigenvalue problems to determine their theoretical
properties. Through this analysis, we prove that any field-based FEM solution for an inhomogeneous
waveguide problem can be used in a wave port boundary condition for a Lorenz gauge potential-based
method. Then, in Section 3, we present the development of an FEM discretization of the Lorenz gauge
potential-based eigenvalue problem that will be used to verify the theoretical claims made in Section 2.
We also note in this section details on unique null spaces in the 2D formulation of waveguide problems
that prevents the Lorenz gauge potential-based method from being useful for practical analysis of
inhomogeneous waveguides. However, the method is still necessary to numerically validate the various
theoretical claims made throughout this work, which is done in Section 4. Finally, we present conclusions
in Section 5.

2. PROPERTIES OF THE EIGENVALUE PROBLEMS

In this section, relevant spectral properties of the eigenvalue problems considered in this work are
theoretically analyzed. We begin in Section 2.1 by reviewing preliminary material related to the
governing wave equations of interest and their corresponding boundary conditions. Following this,
we specialize the analysis in Section 2.2 to consider waveguiding geometries to analyze the desired
spectral properties.

2.1. Preliminaries

In a lossless, source-free inhomogeneous medium, Maxwell’s equations can be combined into a wave
equation to get

∇× 1

µr
∇×E− k20ϵrE = 0, (1)

where µr is the relative permeability, ϵr the relative permittivity, and k20 = ω2µ0ϵ0. Alternatively, the
magnetic vector potential A and electric scalar potential Φ can be introduced in the typical fashion so
that B = ∇×A and E = −jωA−∇Φ. In terms of the potentials, Maxwell’s equations become a set of
two coupled partial differential equations. In many instances it is convenient to decouple the potentials
into separate partial differential equations through an appropriate choice of gauge condition. Using the
particular Lorenz gauge

∇ · ϵrA = −jωµ0ϵ0Φ, (2)

the governing wave equations for A and Φ can be easily found to be [17]

∇× 1

µr
∇×A− k20ϵrA− ϵr∇∇ · ϵrA = 0, (3)

∇ · ϵr∇Φ+ k20Φ = 0. (4)
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Note that (4) is not always needed because it is derivable from (3) in non-static cases, and because the
solution for Φ can be recovered via the gauge condition (2) [26]. As will be elucidated later, this gauge
condition also causes a component of A to exactly cancel with ∇Φ in the computation of E, making
these contributions not of interest physically. Given this, and that (4) is a well-studied equation (e.g.,
[14]), we do not consider explicit solutions of (4) in this work.

Before moving on, it will be helpful to review the boundary conditions applicable to A. Exhaustive
accounts on standard boundary conditions for A can be found in various locations; e.g., [17, 26, 29, 30].
We will review only those of most relevance for this particular work. First, at material interfaces the
tangential components of A should be continuous, which can be easily inferred from its relationship
with E. Similarly, at an interface with a perfect electric conductor (PEC) it can be determined that
n̂×A = 0. Additionally, one also has that on a PEC surface∫

Γ
n̂ · ϵrAdΓ = 0, (5)

where Γ denotes the surface of the PEC object [29]. This condition is synonymous with a charge
neutrality constraint, which can be understood by considering how n̂ · ϵrA is related to the electric
flux density. Finally, we must also consider the boundary condition appropriate for ∇ · ϵrA. From the
Lorenz gauge of (2), we see that the appropriate boundary condition will be that of Φ, which is that Φ
equals a constant voltage [29]. Hence, we also have that ∇ · ϵrA is constant on a PEC surface.

2.2. Spectral Properties

When considering waveguide geometries that are invariant along the propagation direction (taken to
be the z-direction in this work), the problem can be reduced to analyzing a 2D cross section of the
waveguide by searching for solutions in the general form of

F = [ft(x, y) + ẑfz(x, y)]e
−jβz, (6)

where F can be either E or A; ft are the transverse components; fz is the longitudinal component; and
β is the phase constant [31]. Upon substituting (6) into either (1) or (3), an eigenvalue problem can be
established to solve for the allowable β and mode profiles defined by ft and fz.

To establish theoretical results relevant to wave port boundary conditions, it will be useful to
examine some of the spectral properties of (1) and (3) as eigenvalue problems in a generic closed 3D
region. After establishing these general properties, we can conclude that they will also hold for the
specific case of (6) for a particular β. Considering this, the generalized eigenvalue problems of interest
are

∇× 1

µr
∇×Em = ω2

mϵrEm, (7)

∇× 1

µr
∇×Am − ϵr∇∇ · ϵrAm = ν2mϵrAm, (8)

where ω2
m and ν2m are the eigenvalues, and Em and Am are the corresponding eigenvectors.

To begin, we establish that there is no overlap between the null spaces of the two differential
operators on the left-hand side of (8) for eigenvectors with non-zero eigenvalues. To aid in this, we
define two additional eigenvalue problems as

∇× 1

µr
∇×A⊥,m = ν2⊥,mϵrA⊥,m, (9)

−ϵr∇∇ · ϵrA∥,m = ν2∥,mϵrA∥,m. (10)

By taking the divergence of (9), we find that

0 = ν2⊥,m∇ · ϵrA⊥,m. (11)

So long as ν2⊥,m ̸= 0, we see that all eigenvectors A⊥,m of (9) are in the null space of the eigenvalue

problem (10). Similarly, we can divide (10) by ϵr and take the curl to find that

0 = ν2∥,m∇×A∥,m. (12)
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Again, so long as ν2∥,m ̸= 0, we see that all eigenvectors A∥,m of (10) are in the null space of the

eigenvalue problem (9).
This result shows that any eigenvector Em of (7) with eigenvalue ω2

m ̸= 0 will also be an eigenvector
of (8) with the same eigenvalue ω2

m. This establishes that all solutions of the field-based problem (7)
will also be solutions to the potential-based problem (8). However, it is also necessary to show that this
set of solutions is sufficient for exciting a potential-based analysis, which can be established by showing
the two families of eigenvectors A⊥,m and A∥,m are bases for the null spaces of their complementary
problems. If this is the case, we see that the only additional solutions to (8) produce zero electric and
magnetic fields, and so are not of physical interest as excitations to a simulation.

To show that the two families of eigenvectors can serve as bases, we demonstrate that the differential
operators on the left-hand sides of (9) and (10) are self-adjoint with respect to an L2 inner product [32].
Given this, each operator then possesses a complete set of mutually orthogonal eigenvectors that can
be used to expand any function within its domain of operation.

We begin with (9), with the inner product being

⟨u, L1v⟩ =
∫
Ω
u∗ · L1vdΩ, (13)

where L1 = ∇× 1/µr∇× · and Ω is the entire domain of the problem being considered. To show that
L1 is self-adjoint, we integrate by parts twice and use the divergence theorem to get

⟨u, L1v⟩ =
∫
Ω
v · ∇ × 1

µr
∇× u∗dΩ+

∫
Γ
n̂ ·

(
1

µr
(∇× v)× u∗ + v × 1

µr
(∇× u∗)

)
dΓ, (14)

where Γ is the boundary surface of the closed region Ω.
Various choices for boundary conditions can be applied to u and v to ensure that L1 is self-adjoint.

For an inhomogeneous waveguide problem, it is typical to consider that the waveguide is “shielded” by
placing a continuous PEC boundary around the outer wall of the waveguide. Adopting this choice here,
we will have that n̂×v = 0 and n̂×u∗ = 0 on Γ. With this boundary condition, the boundary integrals
in (14) vanish and we are left with

⟨u, L1v⟩ =
∫
Ω
v · ∇ × 1

µr
∇× u∗dΩ = ⟨L1u,v⟩, (15)

which establishes the self-adjoint property of L1.
A similar process can now be used to show that L2 = −ϵr∇∇ · ϵr· is self-adjoint. We begin by

integrating by parts twice and using the divergence theorem to get

⟨u, L2v⟩ = ⟨L2u,v⟩ −
∫
Ω
n̂ · (ϵru∗∇ · ϵrv − ϵrv∇ · ϵru∗) dΩ. (16)

Specifying physically meaningful boundary conditions that make the boundary terms vanish is more
involved here than for (14). From the discussion in Section 2.1, we know that ∇ · ϵrv and ∇ · ϵru∗ will
be constants on the PEC surfaces. If there is only one PEC, we can choose this as our reference (i.e.,
“ground”) so that the constant voltage would be zero and naturally cause the boundary terms in (16)
to vanish. If there are additional PECs not connected to the reference conductor, we can then factor
the constant terms outside of the integrals so that our boundary terms become

−∇ · ϵrv
∫
Γ
n̂ · ϵru∗dΓ +∇ · ϵru∗

∫
Γ
n̂ · ϵrvdΓ. (17)

From the charge neutrality constraint discussed in (5), we see that all boundary terms in (16) will
vanish. As a result, we have that

⟨u, L2v⟩ = −
∫
Ω
v · ϵr∇∇ · ϵru∗dΩ = ⟨L2u,v⟩, (18)

proving the self-adjoint property of the L2 operator.
Having shown that both L1 and L2 are self-adjoint operators, we have established the desired

property that each operator’s set of eigenvectors is complete in their respective Hilbert spaces of



Progress In Electromagnetics Research C, Vol. 131, 2023 123

interest [32]. Combining this with the fact that the null spaces of L1 and L2 do not overlap, we
also see that any null vector of either L1 or L2 with non-zero eigenvalue will not be in the null space of
L1 + L2. As a result, the operator L1 + L2 is relatively well-conditioned, which is in sharp contrast to
the significant ill-conditioning of the L1 operator. This ill-conditioning is the origin of the low-frequency
breakdown of traditional field-based FEM solvers. Hence, potential-based FEM solvers that successfully
discretize L1 + L2 are free from the low frequency breakdown, as shown for a set of geometries in [19].

With respect to the physical meanings of the A⊥ and A∥ components of A, it is useful to consider
how they contribute to the computation of B and E. As will be shown, only the A⊥ component
contributes to physically measurable fields in the Lorenz gauge. To see this, we first trivially note that
from (12) we have that A∥ will produce no B, and so we recognize B is completely due to the A⊥
component. For E, it is helpful to first recognize that due to (11) the Lorenz gauge condition only ties
the A∥ component to Φ. This allows us to write the computation of E in terms of the potentials as

E = −jωA−∇Φ = −jω(A⊥ +A∥) +
1

jωµ0ϵ0
∇∇ · ϵrA∥. (19)

From (3), we conclude that ∇∇ · ϵrA∥ = −k20A∥. Using this result in (19), we immediately see
that E = −jωA⊥, showing that all measurable fields are only due to A⊥. This provides another
interpretation for why in many situations it is not necessary to explicitly compute Φ by solving (4).

3. POTENTIAL-BASED FEM FORMULATION

We will now consider the development of potential-based FEM solvers for analyzing inhomogeneous
waveguides to aid in validating the theoretical claims made in the previous section. We begin in
Section 3.1 by considering simply-connected geometries that admit a relatively standard discretization
approach. Following this, we will have the proper context to discuss the issues with multiply-connected
geometries in Section 3.2 that make this method not practical for general use cases. Despite these issues
for practical situations, the method of Section 3.1 is still needed to verify the theoretical claims made
in Section 2.

3.1. Simply-Connected Case

To begin, we note that the weak form for the vector wave equation given in (3) can be easily found to
be ∫

Ω

[
1

µr
(∇×W∗) · (∇×A)− k20ϵrW

∗ ·A− ϵrW
∗ · ∇∇ · ϵrA

]
dΩ = 0, (20)

where W is the testing function. The FEM discretization of the final term requires more care because
the divergence of a typical edge element basis function is zero. To handle this issue, we follow the
example of [19] and temporarily introduce an auxiliary unknown P = ∇ · ϵrA that is proportional to
the scalar potential. The weak form wave equation then becomes∫

Ω

[
1

µr
(∇×W∗) · (∇×A)− k20ϵrW

∗ ·A− ϵrW
∗ · ∇P

]
dΩ = 0. (21)

We then expand our various functions along similar lines to the traditional field-based approach
as [1, 14]

A =

[
1

β
at(x, y) + jẑaz(x, y)

]
e−jβz, (22)

P =
1

β
p(x, y)e−jβz, (23)

W∗ =

[
1

β
wt(x, y)− jẑwz(x, y)

]
ejβz. (24)
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Substituting these expressions into (21) and simplifying yields∫
Ω

{
1

β2

1

µr
(∇t ×wt) · (∇t × at)−

1

β2
k20ϵrwt · at +

1

µr
(wt +∇twz) · (at +∇taz)

−k20ϵrwzaz −
1

β2
ϵrwt · ∇tp+ ϵrwzp

}
dΩ = 0, (25)

where ∇t is a transverse differential operator [31].
We now look at how to eliminate the auxiliary variable P . To do this, we solve for P in terms of

A in a weak sense [19]. In particular, we test P = ∇ · ϵrA with a testing function

Q∗ =
1

β
q(x, y)ejβz (26)

to get ∫
Ω

1

β
qejβz∇ · ϵrA dΩ =

∫
Ω
=

1

β2
qp dΩ. (27)

Next, we integrate by parts and substitute in the explicit expression for A from (22) to get

−
∫
Ω
ϵr

(
1

β
∇tq + jẑq

)
·
(
1

β
at + jẑaz

)
dΩ =

∫
Ω

1

β2
qp dΩ, (28)

which can be simplified to ∫
Ω

[
− 1

β2
ϵr∇tq · at + ϵrqaz

]
dΩ =

∫
Ω

1

β2
qp dΩ. (29)

We can solve (29) with FEM by expanding

at(x, y) =

Nedge∑
n=1

at,nNn(x, y), (30)

az(x, y) =

Nnode∑
n=1

az,nNn(x, y), (31)

where Nn is the nth edge element, and Nn is the nth linear nodal function typically used in scalar
FEM [14]. Similarly, p can be expanded as in (31). Using a Galerkin testing approach, the matrix form
of (29) becomes [

−Kzt,ϵ β2Gzz,ϵ

]{at
az

}
= [Gzz] {p} , (32)

where the matrix elements are given by

Kzt,ϵ;mn =

∫
Ω
ϵr∇tNm ·NndΩ, (33)

Gzz;mn =

∫
Ω
NmNndΩ, (34)

Gzz,ϵ;mn =

∫
Ω
ϵrNmNndΩ. (35)

We can then solve (32) to find

{p} =
[
−G−1

zz Kzt,ϵ β2G−1
zz Gzz,ϵ

]{at
az

}
. (36)

Returning to the full formulation of (25), we can find that the matrix form of the terms involving
p is [

−(1/β2)Ktz,ϵ

Gzz,ϵ

]
{p} , (37)
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where

Ktz,ϵ;mn =

∫
Ω
ϵrNm · ∇tNndΩ. (38)

The auxiliary unknown {p} can now be completely eliminated by using (36) to get[
−(1/β2)Ktz,ϵ

Gzz,ϵ

] [
−G−1

zz Kzt,ϵ β2G−1
zz Gzz,ϵ

]{at
az

}
=

[
−(1/β2)Ktz,ϵG

−1
zz Kzt,ϵ −Ktz,ϵG

−1
zz Gzz,ϵ

−Gzz,ϵG
−1
zz Kzt,ϵ β2Gzz,ϵG

−1
zz Gzz,ϵ

]{
at
az

}
. (39)

This can be combined with the remaining matrix form of (25) to arrive at the final generalized eigenvalue
problem of[

K2,µ Ktz,µ −Ktz,ϵG
−1
zz Gzz,ϵ

0 Gzz,ϵG
−1
zz Gzz,ϵ

]{
at
az

}
=− 1

β2

[
K1 − k20K2,ϵ +Ktz,ϵG

−1
zz Kzt,ϵ 0

Kzt,µ −Gzz,ϵG
−1
zz Kzt,ϵ S1 − k20Gzz,ϵ

]{
at
az

}
, (40)

where

K1;mn =

∫
Ω

1

µr
(∇t ×Nm) · (∇t ×Nn) dΩ, (41)

K2,µ;mn =

∫
Ω

1

µr
Nm ·NndΩ, (42)

K2,ϵ;mn =

∫
Ω
ϵrNm ·NndΩ, (43)

Ktz,µ;mn =

∫
Ω

1

µr
Nm · ∇tNndΩ, (44)

Kzt,µ;mn =

∫
Ω

1

µr
∇tNm ·NndΩ, (45)

S1;mn =

∫
Ω

1

µr
∇tNm · ∇tNndΩ. (46)

As will be shown in Section 4, it is interesting to note that the generalized eigenvalue problem
of (40) does not support trivial β2 = 0 modes, which are not physical but are present in traditional
formulations [1, 3, 8]. These trivial modes slow convergence in standard iterative solvers, requiring the
development of specialized eigensolvers to avoid this issue. Eliminating these trivial modes directly
through the equations employed allows for a wider range of advanced iterative solvers to be used in the
solution of (40) without any further special treatment.

3.2. Multiply-Connected Case

We will now consider the case of a multiply-connected geometry for the potential-based FEM
formulation. A simple example of this kind of structure would be a microstrip trace made of PEC.
In this case, the signal conductor puts a single “hole” in the 2D geometry that changes the topology of
the region. This “hole” causes issues for the potential-based FEM formulation introduced in Section 3.1
by adding an element into the null space of the discretized L1 operator that is not able to be removed
by the discretized L2 operator. As mentioned previously, this causes this method to not be useful for
many practical use cases. However, it is still needed to provide sufficient numerical validation for the
theoretical claims made throughout this work. It should also be emphasized that this issue is unique to
the 2D case, and does not affect general-purpose 3D Lorenz gauge potential-based methods [19, 26].

The origin of the issue for multiply-connected geometries is the boundary condition that must be
enforced on the additional PEC region. Recalling the discussion in Section 2, ∇ · ϵrA must equal a
constant on all PEC surfaces of the geometry. When there is only a single PEC region this causes no
issue because the voltage of this PEC can be set to zero. However, when more distinct PEC regions are
in the geometry (making the 2D cross-section multiply-connected) ∇·ϵrA needs to equal some non-zero
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constant along each non-reference conductor. As a result, the auxiliary unknown P = ∇ · ϵrA cannot
be expanded like in (23).

Naively setting the voltage on all PEC regions to zero so that P can be expanded with (23) leads to
a generalized eigenvalue problem that has a null space with dimension equaling the number of “holes” in
the 2D geometry. The resulting method exhibits a low-frequency breakdown, but is otherwise accurate
at middle frequencies, as will be shown in Section 4. Attempting to allow the PEC objects to support
a non-zero voltage while still using (23) to expand P leads to a method with no null space, but which
produces inaccurate physical results at all frequencies (this is not shown for brevity).

4. NUMERICAL RESULTS

In this section, we present the results from a number of numerical examples to verify different claims
made throughout this work. We begin in Section 4.1 by presenting results for simply-connected
geometries. Following this, we demonstrate the issues with multiply-connected geometries in Section 4.2.
Finally, we discuss the results of using a field-based wave port as a boundary condition for a 3D Lorenz
gauge potential-based FEM solver in Section 4.3.

For all numerical results that are compared to an analytical solution, we utilize an iterative
eigenvalue problem solver to only compute a small number of eigenvalues and eigenvectors to mimic a
more practical use case. The particular iterative method we use is the Krylov-Schur algorithm described
in [33], which is implemented in Matlab as the eigs function. When we compute all the eigenvalues
or singular values of the system, we utilize other standard algorithms designed for computing the full
decompositions.

4.1. Simply-Connected Case

To begin, we consider two simple geometries that have analytical solutions to validate the accuracy of
the potential-based FEM formulation presented in Section 3.1. The first is an empty circular waveguide
and the second is a rectangular waveguide half-filled with a dielectric material with ϵr = 4. In each
case, we normalize various quantities with respect to dimensions of the waveguide to plot universal
dispersion curves for the first few propagating modes, which are shown in Fig. 1. As expected, very
good agreement is achieved between the potential-based FEM and analytical results.

(a) (b)

Figure 1. Normalized propagation constant for (a) an empty circular waveguide and (b) a half-filled
rectangular waveguide, with geometric details shown in the insets. Solid lines are the analytical solution
and circles are from the potential-based FEM formulation. In (b), pluses are from the potential-based
FEM that uses a SAI (see main text for details).
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For large scale computations, it is impractical to calculate G−1
zz as it ruins the sparsity of the

matrix system and is computationally inefficient. To alleviate this, it has been found that the accuracy
and other advantageous properties of potential-based FEM formulations can be maintained if a sparse
approximate inverse (SAI) is used instead of G−1

zz [19]. We test this here on the half-filled rectangular
waveguide geometry by using the SAI algorithm from [34] that is parallelizable and adaptively finds a
sparsity pattern for the SAI.

As initial settings, we allow the SAI to have a fill-in of 30 elements per row (Gzz is a 1001× 1001
matrix for this geometry), where the fill-in number sets a “soft” maximum on the number of non-zero
elements in each row. For this case, the SAI achieved a 98.28% sparsity. We found that with these
settings a negligible change in accuracy occurred, as shown in Fig. 1(b). We also ran further tests
for different fill-in numbers, and found that a comparable accuracy was achieved until the fill-in was
dropped from 15 to 10 (from 99.12% to 99.41% sparsity). This highlights that this technique can also
be used in solving eigenvalue problems, but more extensive testing on a wider range of geometries is
warranted to determine what settings are sufficiently robust for practical use.

Next, we demonstrate that the potential-based FEM formulation does not support trivial β2 = 0
modes. To show this, we plot in Fig. 2 the relative magnitude of β2 for all eigenvectors of the potential-
based formulation of (40), the version using the SAI with a fill-in of 30 elements per row, and for
a traditional field-based formulation described in [1, 14]. It is clear that the field-based formulation
supports a large number of trivial modes, which are due to the null space of the L1 operator. It is
known that the number of such null modes matches the number of internal nodes of the computational
domain [11], which is found to be the case for this geometry. In contrast to this, the potential-based
formulation supports no such modes due to the spectral properties of the L1 + L2 operator that were
discussed in Section 2. We also see that the results using a SAI are effectively identical to those
using the full G−1

zz , indicating that the SAI does not significantly affect the spectral properties of the
potential-based formulation.

Figure 2. Comparison of the relative magnitude of β2 for the half-filled rectangular waveguide when
using the potential-based FEM (PB-FEM), the potential-based FEM using a SAI (PB-FEM-SAI), and
traditional field-based FEM (FB-FEM) formulations.

As a final example, we show that the eigenvectors of the potential-based FEM formulation closely
match those of the traditional field-based approach of [1] for a more complicated inhomogeneous
waveguide that does not support an analytical solution (geometry shown as an inset in Fig. 3(b)).
As discussed in Section 2, this comparison is only applicable for the subset of eigenvectors of the
potential-based FEM formulation that are eigenvectors of the L1 operator. To check the similarity of
the eigenvectors, we first identify the potential- and field-based eigenvectors that have approximately
the same eigenvalue and that are most similar to one another. We then perform any constant re-scaling
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(a) (b)

Figure 3. Relative error between the potential-based and field-based eigenvectors of the L1 operator.
(a) Relative error for each eigenvector at k0a = 10.1 and (b) average relative error for all eigenvectors
as a function of k0a. The geometry analyzed is shown as an inset in (b).

that is needed (e.g., due to a complex phase) so that the relative error can be computed. We compute
the relative ℓ2-error between the two eigenvectors as

RelativeError =
||vFB − vPB||2

||vFB||2
, (47)

where vFB and vPB are the field-based and potential-based eigenvectors, respectively.
We show this relative error for each of the relevant eigenvectors in Fig. 3(a) for a simulation at

k0a = 10.1, where the eigenvectors have been sorted in a descending fashion according to the magnitude
of their eigenvalue. We see that overall, the relative error is generally small between the potential-
and field-based FEM formulations. The increase in relative error toward the middle of the curves is
primarily due to mixing of degenerate A⊥,m and A∥,m modes in the potential-based method. These
modes can be separated numerically if need, but this is not necessary for the current purposes so is not
performed. We also perform this comparison for the potential-based formulation using a SAI with a
fill-in of 30 elements per row (Gzz is a 804× 804 matrix) and find similar results.

To monitor these results as a function of k0a, we compute the average relative error for all of the
relevant eigenvectors at a given value of k0a. These results are shown in Fig. 3(b) for 0.1 ≤ k0a ≤ 19.85,
where it is seen that the average relative error is largely consistent. There is an increase in error as
k0a becomes smaller, which is believed to occur because most of the modes in the waveguide are below
cutoff and the corresponding number of degenerate A⊥,m and A∥,m modes increases.

4.2. Multiply-Connected Case

We now present numerical results illustrating the issues with the formulation of Section 3 for multiply-
connected geometries. First, we show how the size of the numerical null space grows with the number of
“holes” in the geometry for a naive potential-based FEM formulation that enforces P = ∇ · ϵrA = 0 on
all PEC surfaces. In particular, we inspect the singular value spectra of the matrix on the right-hand
side of (40) for a microstrip geometry with one to three signal traces, where each signal trace produces a
new “hole” in the geometry. A schematic of the simulated geometry with a single signal trace is shown
in Fig. 4. These parameters are also representative for the other microstrip geometries, with the two
(three) signal trace case having an inter-trace distance of 40µm (20µm). The corresponding singular
value spectra are shown in Fig. 5, where it is clearly seen that one extremely small singular value exists
for each “hole” in the geometry being considered.
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Figure 4. Schematic of the single microstrip trace geometry. Thick black lines denote a PEC boundary
condition.

Figure 5. Comparison of the singular value
spectrum of the potential-based FEM formulation
for geometries with different numbers of “holes”.
Markers are placed at each actual data point
making up a line to highlight the number of
very small singular values matches the number of
“holes” in the geometry.

Figure 6. Comparison of the phase constant of
a microstrip geometry as a function of frequency
using various FEM formulations. Only the tree-
cotree method maintains accuracy over the entire
set of frequencies simulated.

Next, we simulate the microstrip geometry with a single trace over a broad range of
frequencies to demonstrate that the presence of any extremely small singular values leads to a low-
frequency breakdown. We compare the solution to an analytical prediction based on quasistatic
approximations [35], a traditional field-based formulation [1], and a low-frequency stabilized traditional
formulation [8]. In particular, the low-frequency stabilized formulation utilizes a tree-cotree splitting
within a potential-based formulation that utilizes a different gauge from the standard Lorenz gauge [8].
From the results in Fig. 6, it is clear that only the formulation from [8] maintains accuracy over the
entire frequency sweep. We also note that the frequency where a catastrophic breakdown occurs in the
numerical results is consistent with the analytical estimation [16]

(ωℓ)2

1017
> 10−16, (48)

where ℓ is the average edge length of the mesh.
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These examples clearly demonstrate the issues with using a straightforward discretization like that
discussed in Section 3.1 for multiply-connected geometries. As a result, this potential-based FEM
formulation is not suitable for use in many practical scenarios. This is unfortunate, since having
a method that does not support trivial β2 = 0 eigenvalues would be beneficial for improving the
convergence of iterative methods without the need of specialized eigensolvers [1, 3, 8]. However, because
any traditional formulation can be used as part of a wave port boundary condition for a 3D Lorenz
gauge potential-based FEM formulation, this is not an issue for the continued development of these
methods.

4.3. Wave Port Boundary Condition

As a final numerical example, we consider the use of a traditional formulation of a wave port boundary
condition in a 3D Lorenz gauge potential-based FEM analysis to show that this can be successfully
utilized. In particular, we analyze a rectangular waveguide geometry that has transverse dimensions of
22.86mm × 10.16mm and a longitudinal dimension of 40mm. In the middle of the waveguide, there
is a dielectric brick with transverse dimensions of 8mm× 7mm and a longitudinal dimension of 5mm.
The relative permittivity of the dielectric brick is selected as ϵr = 15 to ensure there is a resonance in
the scattering parameters of this geometry for the 9.5–10.5GHz frequency band considered.

We use two wave port boundary conditions on either end of the rectangular waveguide based on the
usual approach of [14, 15]. Although the mode distribution used is simply that of a TE10 mode, we still
find this distribution numerically using the 2D FEM analysis of an inhomogeneous waveguide as detailed
in [1] to emulate what would be done in practice. Using these wave ports, we calculate the scattering
parameters when the 3D portion of the geometry is solved with the Lorenz gauge potential-based FEM
discussed in [19]. These results are shown in Fig. 7, where they are also compared to the solution of the
same problem using a traditional 3D field-based FEM analysis. As can be seen in Fig. 7, the agreement
between the two methods is excellent. This shows that one can successfully use traditional wave port
boundary conditions with a 3D Lorenz gauge potential-based FEM solver.

Figure 7. Comparison of the |S11| and |S21| of a rectangular waveguide geometry with a dielectric
brick at its center. The waveguide is excited with a TE10 mode distribution using 3D Lorenz gauge
potential-based and field-based solvers. Both 3D problems are excited using the same field-based wave
port boundary condition.
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5. CONCLUSIONS

In this work, we presented a theoretical and numerical analysis of how wave port boundary conditions can
be utilized in 3D Lorenz gauge potential-based FEM solvers. By analyzing the properties of the relevant
eigenvalue problems, we presented theoretical evidence that any traditional formulation for finding the
modes of an inhomogeneous waveguide could be used in a wave port boundary condition for a 3D Lorenz
gauge potential-based FEM formulation. To aid in numerically validating these theoretical claims, we
also introduced a new 2D potential-based FEM formulation in the same Lorenz gauge as typical 3D
solvers. Based on the numerical results demonstrated here, the widely useful wave port boundary
condition can now be easily incorporated into 3D Lorenz gauge potential-based FEM formulations.
These emerging methods have superior conditioning properties than traditional methods and do not
require specialized treatments as the solver transitions between low- and high-frequency regimes. Hence,
it can form the basis of a more robust 3D FEM solver than existing approaches in the future.
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