Vol. 129
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-01-26
Microstrip Fed Pi-Slot Patch Antenna with T-Slot DGS for UWB Applications
By
Progress In Electromagnetics Research C, Vol. 129, 63-72, 2023
Abstract
An Ultra-wideband Microstrip fed patch antenna with a defective ground surface is presented in this paper. The above-mentioned antenna comprises a T-slot in the ground plane and a Pi-slot in a rectangular patch. The proposed antenna is developed and modeled using the High-Frequency Structure Simulation tool on an RTDuroid 5880 substrate with a thickness of 1.6 mm and a dielectric constant of 2.2. A T-shaped defect is carved in the ground plane to enhance the antenna's radiation properties, gain, and bandwidth. A conventional Pi-slotted patch antenna operating at 9.74 GHz with a return loss of 19.7 dB is designed, followed by an ultra-wideband antenna embedded with a T-slot in the partial ground surface operating from 7.15 GHz to 10.925 GHz with an impedance bandwidth (S11 < −10 dB) of 3.775 GHz. It showcases exceptional characteristics with a peak gain of 6.99 dBi at 8.95 GHz. A satisfactory agreement is found between the experimental data and simulation results. The proposed Pi-slot patch antenna with the defective ground has applications in radar, satellite, weather monitoring, and vehicle speed detection for law enforcement.
Citation
Shaik Jabeen, and Gumireddy Hemalatha, "Microstrip Fed Pi-Slot Patch Antenna with T-Slot DGS for UWB Applications," Progress In Electromagnetics Research C, Vol. 129, 63-72, 2023.
doi:10.2528/PIERC22112804
References

1. Balanis, C. A., "Antenna theory," Analysis and Design, 3rd Edition, Wiley, New York, 2005.

2. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Book, Artech House, Boston, 2000.

3. Haque, S. K. M. and K. M. Parvez, "Slot antenna miniaturization using slit, strip, and loop loading techniques," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 5, 2215-2221, May 2017.
doi:10.1109/TAP.2017.2684191

4. Parkash, D. and R. Khanna, "Multiband antenna structure for heterogeneous wireless communication systems using DGS technique," International Journal of Microwave and Wireless Technologies, Vol. 6, No. 5, 521-526, 2014.
doi:10.1017/S1759078713001104

5. Salgare, D. S. and S. R. Mahadik, "A review of defected ground structure for microstrip antennas," International Research Journal of Engineering and Technology, Vol. 2, No. 6, 150-154, 2015.

6. Lim, J.-S., C.-S. Kim, Y.-T. Lee, D. Ahn, and S. Nam, "A spiral-shaped defected ground structure for coplanar waveguide," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 9, 330-332, 2002.
doi:10.1109/LMWC.2002.803208

7. Boutejdar, A., G. Nadim, S. Amari, and A. S. Omar, "Control of band- stop response of cascaded microstrip low-pass-bandstop filters using arrowhead slots in backside metallic ground plane," IEEE Antennas and Propagation Society International Symposium, Vol. 1B, 574-577, 2005.
doi:10.1109/APS.2005.1551623

8. Li, J., J. Chen, Q. Xue, J. Wang, W. Shao, and L. Xue, "Compact microstrip lowpass filter based on defected ground structure and compensated microstrip line," Proceedings of IEEE MTT-S International Microwave Symposium, Long Beach, Calif, USA, June 2005.

9. Chen, J.-X., J.-L. Li, K.-C. Wan, and Q. Xue, "Compact quasielliptic function filter based on defected ground structure," IEEE Proceedings: Microwaves, Antennas and Propagation, Vol. 153, No. 4, 320-324, 2006.
doi:10.1049/ip-map:20050235

10. Jan, J.-Y. and J.-W. Su, "Bandwidth enhancement of a printed wide-slot antenna with a rotated slot," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 6, 2111-2114, 2005.
doi:10.1109/TAP.2005.848518

11. Weng, L. H., Y. C. Guo, X. W. Shi, and X. Q. Chen, "An overview on defected ground structure," Progress In Electromagnetics Research B, Vol. 7, 173-189, 2008.
doi:10.2528/PIERB08031401

12. Kurniawan, A. and S. Mukhlishin, "Wideband antenna design and fabrication for modern wireless communications systems," Science Direct, Procedia Technology, Vol. 11, 348-353, 2013.
doi:10.1016/j.protcy.2013.12.201

13. Yadav, M. V., S. Baudha, Y. Bansal, and S. K. Verma, "A novel compact rectangular slot antenna with ladder structure for ultra-wideband applications," Telecommunications and Radio Engineering, Vol. 81, No. 1, 2022.
doi:10.1615/TelecomRadEng.2022038178

14. Suvarna, K., N. Ramamurthy, and D. V. Vardhan, "A tri-band miniaturized antenna using fractal defected ground structure for C/X and Ku-band applications," Progress In Electromagnetics Research M, 115-128, 2022.
doi:10.2528/PIERM22032301

15. Khoiro, M. and R. A. Firdaus, "A microstrip triple-band antenna with T-strip and dumbbell defected ground structure for wireless applications," International Joint Conference on Science and Engineering 2021 (IJCSE 2021), 429-433, Atlantis Press, 2021.

16. Khandelwal, M. K., B. K. Kanaujia, and S. Kumar, "Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends," International Journal of Antennas and Propagation, Vol. 2017, Article ID 2018527, 22pages, 2017.

17. Gopi, D., A. R. Vadaboyina, and J. R. K. Dabbakuti, "DGS based monopole circular-shaped patch antenna for UWB applications," SN Applied Sciences, Vol. 3, No. 2, 2021.
doi:10.1007/s42452-020-04123-w

18. Ullah, S., C. Ruan, M. S. Sadiq, T. Ul Haq, A. K. Fahad, and W. He, "Super wide band, defected ground structure (DGS), and stepped meander line antenna for WLAN/ISM/WiMAX/UWB and other wireless communication applications," Sensors, Vol. 20, No. 6, 1735, 2020.
doi:10.3390/s20061735