1. Ng, H. J. and D. Kissinger, "Highly miniaturized 120-GHz SIMO and MIMO Radar sensor with on-chip folded dipole antennas for range and angular measurements," IEEE Trans. on Microw. Theory and Tech., Vol. 66, No. 6, 2592-2603, 2018, DOI: 10.1109/TMTT.2018.2829178.
doi:10.1109/TMTT.2018.2829178
2. Beer, S., H. Gulan, C. Rusch, et al. "Coplanar 122-GHz antenna array with air cavity reflector for integration in plastic packages," IEEE Antennas and Wireless Propag. Lett., Vol. 11, 160-163, 2012, DOI: 10.1109/LAWP.2012.2186783.
doi:10.1109/LAWP.2012.2186783
3. Hasan, R., W. A. Ahmad, J. H. Lu, et al. "Design and characterization of a differential microstrip patch antenna array at 122 GHz," IEEE Radio and Wireless Symp. (RWS), 28-30, 2018, DOI: 10.1109/RWS.2018.8304937.
4. Ouseph, L., A. Mathews, and A. Chandroth, "Substrate integrated waveguide without metallized wall posts," Progress In Electromagnetics Research Letters, Vol. 77, 7-14, 2018, doi: 10.2528/PIERL18041806.
5. Ismail, N., et al. "Wideband substrate-integrated-waveguide BPF incorporated with complimentary-split-ring-resonators," 2018 Progress In Electromagnetics Research Symposium (PIERS - Toyama), Japan, August 1-4, 2018.
6. Huang, Y., Z. Shao, and L. Liu, "A substrate integrated waveguide bandpass filter using novel defected ground structure shape," Progress In Electromagnetics Research, Vol. 135, 201-213, 2013.
doi:10.2528/PIER12110411
7. Kazemi, R., E. Fathy, and R. A. Sadeghzadeh, "Dielectric rod antenna array with substrate integrated waveguide planar feed network for wideband applications," IEEE Trans. on Antennas and Propag., Vol. 60, 1312-1319, 2012, DOI: 10.1109/TAP.2011.2182489.
doi:10.1109/TAP.2011.2182489
8. Puskely, J., J. Lacik, Z. Raida, et al. "High-gain dielectricloaded Vivaldi antenna for Ka-band applications," IEEE Antennas and Wireless Propag. Lett., Vol. 15, 2004-2007, 2016, DOI: 10.1109/LAWP.2016.2550658.
doi:10.1109/LAWP.2016.2550658
9. Hesari, S. S. and J. Bornemann, "Wideband circularly polarized substrate integrated waveguide endfire antenna system with high gain," IEEE Antennas and Wireless Propag. Lett., Vol. 16, 2262-2265, 2017, DOI: 10.1109/LAWP.2017.2713720.
doi:10.1109/LAWP.2017.2713720
10. Mirbeik-Sabzevari, A., S. Li, E. Garay, et al. "W-band micromachined antipodal vivaldi antenna using SIW and CPW structures," IEEE Trans. on Antennas and Propag., Vol. 66, No. 11, 6352-6357, 2018, DOI: 10.1109/TAP.2018.2863098.
doi:10.1109/TAP.2018.2863098
11. Taringou, F., D. Dousset, J. Bornemann, et al. "Broadband CPW feed for millimeter-wave SIW-based antipodal linearly tapered slot antennas," IEEE Trans. on Antennas and Propag., Vol. 61, No. 4, 1756-1762, 2013, DOI: 10.1109/TAP.2012.2232270.
doi:10.1109/TAP.2012.2232270
12. Frank, M., F. Lurz, R.Weigel, et al. "Compact low-cost substrate integrated waveguide fed antenna for 122 GHz radar applications," Int. J. of Microw. and Wireless Technol., Vol. 11, 408-412, 2019, https://doi.org/10.1017/S1759078719000072.
doi:10.1017/S1759078719000072
13. Misilmani, H. M. E., T. Naous, and S. K. A. Khatib, "A review on the design and optimization of antennas using machine learning algorithms and techniques," Int. J. RF Microw. Comput. - Aided Eng., Vol. 30, No. 10, 1-28, 2020, https://doi.org/10.1002/mmce.22356.
doi:10.1002/mmce.22356
14. Cui, L., Y. Zhang, R. Zhang, et al. "A modified efficient KNN method for antenna optimization and design," IEEE Trans. Antennas Propag., Vol. 68, No. 10, 6858-6866, 2020, DOI: 10.1109/TAP.2020.3001743.
doi:10.1109/TAP.2020.3001743
15. Montaser, A. M. and K. R. Mahmoud, "Deep learning based antenna design and beam-steering capabilities for millimeter-wave applications," IEEE Access, Vol. 9, 145583-145591, 2021, DOI: 10.1109/ACCESS.2021.3123219.
doi:10.1109/ACCESS.2021.3123219
16. Mahmoud, K. R. and A. M. Montaser, "Machine-learning-based beam steering in a hybrid plasmonic nano-antenna array," J. of the Opt. Soc. of Amer. B, Vol. 39, No. 8, 2149-2163, 2022, https://doi.org/10.1364/JOSAB.458574.
doi:10.1364/JOSAB.458574
17. Mahmoud, K. R. and A. M. Montaser, "Design of multi-resonance flexible antenna array applicator for breast cancer hyperthermia treatment," IEEE Access, Vol. 10, 93338-93352, 2022, DOI: 10.1109/ACCESS.2022.3203431.
doi:10.1109/ACCESS.2022.3203431
18. Kim, J. H. and S. W. Choi, "A deep learning-based approach for radiation pattern synthesis of an array antenna," IEEE Access, Vol. 8, 226059-226063, 2020, DOI: 10.1109/ACCESS.2020.3045464.
doi:10.1109/ACCESS.2020.3045464
19. Bozzi, M., A. Georgiadis, and K. Wu, "Review of substrate-integrated waveguide circuits and antennas," IET Microw. Antennas and Propag., Vol. 5, No. 8, 909-920, 2011, DOI: 10.1049/iet-map.2010.0463.
doi:10.1049/iet-map.2010.0463
20. Mahmoud, K. R. and A. M. Montaser, "Performance of tri-band multipolarized array antenna for 5G mobile base station adopting polarization and directivity control," IEEE Access, Vol. 6, 8682-8694, 2018, DOI: 10.1109/ACCESS.2018.2805802.
doi:10.1109/ACCESS.2018.2805802
21. Mahmoud, K. R. and A. M. Montaser, "Synthesis of multi-polarised upside conical frustum array antenna for 5G mm-Wave base station at 28/38 GHz," IET Microw., Antennas Propag., Vol. 12, No. 9, 1559-1569, 2018, https://doi.org/10.1049/iet-map.2017.1138.
doi:10.1049/iet-map.2017.1138
22., Computer Simulation Technology Microwave Studio (CST MWS), Accessed: 2022, [Online], Available: https://www.3ds.com/productsservices/simulia/products/cst-studio-suite/.
23., Chollet, F., et al., Keras. Accessed: 2022, [Online], Available: https://keras.io.
24. Castaldi, G., V. Galdi, and G. Gerini, "Evaluation of a neural-networkbased adaptive beamforming scheme with magnitude-only constraints," Progress In Electromagnetics Research B, Vol. 11, 1-14, 2009.
doi:10.2528/PIERB08092303
25. Smida, A., R. Ghayoula, N. Nemri, et al. "Phased arrays in communication system based on Taguchineural networks," Int. J. Commun. Syst., Vol. 27, No. 12, 4449-4466, 2014, https://doi.org/10.1002/dac.2625.
doi:10.1002/dac.2625
26. Jang, J.-S. R., "Self-learning fuzzy controllers based on temporal back propagation," IEEE Trans. Neural Netw., Vol. 3, No. 5, 714-723, 1992, DOI: 10.1109/72.159060.
doi:10.1109/72.159060
27. Vakula, D. and N. V. S. N. Sarma, "Using neural networks for fault detection in planar antenna arrays," Progress In Electromagnetics Research Letters, Vol. 14, 21-30, 2010, doi: 10.2528/PIERL10030401.
doi:10.2528/PIERL10030401