Vol. 129
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-01-22
Beam-Steering for Narrow Beamwidth 120 GHz Antenna Array Using Deep Learning for Radar Application
By
Progress In Electromagnetics Research C, Vol. 129, 35-50, 2023
Abstract
The narrow beam-width 120 GHz industry, scientific, and medical band compact substrate integrated waveguide (SIW) driven antenna's design and characterization are discussed in this study. A low-cost fabrication is ensured by the employment of a single RO4350B substrate layer with SIW feeding. A transition from SIW to a rectangular waveguide is made for measuring purposes. The radiation pattern has been measured. By determining the right feeding phases for the 20 elements, a Deep Neural Network (DNN) is used to softly compute the beam steering. The weighted hybrid Modified Gravitational Search Algorithm (MGSA) - Particle Swarm Optimization (PSO) approach and neural network with back-propagation technique are utilized to beam-steer by anticipating the appropriate feeding phases of the antenna array elements. To evaluate the effectiveness of the approaches, a number of sample instances are given that beam-steer the pattern in a variety of directions. In addition to allowing for the establishment of crucial analytical equations for the synthesis of antenna arrays, the neural network synthesis method also offers a great deal of flexibility between the system parameters in input and output, which makes the synthesis possible due to the explicit relationship given by them. The conventional technique of the phased array is compared with our DNN model for implementing beam steering.
Citation
Ahmed Mohamed Montaser, "Beam-Steering for Narrow Beamwidth 120 GHz Antenna Array Using Deep Learning for Radar Application," Progress In Electromagnetics Research C, Vol. 129, 35-50, 2023.
doi:10.2528/PIERC22111701
References

1. Ng, H. J. and D. Kissinger, "Highly miniaturized 120-GHz SIMO and MIMO Radar sensor with on-chip folded dipole antennas for range and angular measurements," IEEE Trans. on Microw. Theory and Tech., Vol. 66, No. 6, 2592-2603, 2018, DOI: 10.1109/TMTT.2018.2829178.
doi:10.1109/TMTT.2018.2829178

2. Beer, S., H. Gulan, C. Rusch, et al. "Coplanar 122-GHz antenna array with air cavity reflector for integration in plastic packages," IEEE Antennas and Wireless Propag. Lett., Vol. 11, 160-163, 2012, DOI: 10.1109/LAWP.2012.2186783.
doi:10.1109/LAWP.2012.2186783

3. Hasan, R., W. A. Ahmad, J. H. Lu, et al. "Design and characterization of a differential microstrip patch antenna array at 122 GHz," IEEE Radio and Wireless Symp. (RWS), 28-30, 2018, DOI: 10.1109/RWS.2018.8304937.

4. Ouseph, L., A. Mathews, and A. Chandroth, "Substrate integrated waveguide without metallized wall posts," Progress In Electromagnetics Research Letters, Vol. 77, 7-14, 2018, doi: 10.2528/PIERL18041806.

5. Ismail, N., et al. "Wideband substrate-integrated-waveguide BPF incorporated with complimentary-split-ring-resonators," 2018 Progress In Electromagnetics Research Symposium (PIERS - Toyama), Japan, August 1-4, 2018.

6. Huang, Y., Z. Shao, and L. Liu, "A substrate integrated waveguide bandpass filter using novel defected ground structure shape," Progress In Electromagnetics Research, Vol. 135, 201-213, 2013.
doi:10.2528/PIER12110411

7. Kazemi, R., E. Fathy, and R. A. Sadeghzadeh, "Dielectric rod antenna array with substrate integrated waveguide planar feed network for wideband applications," IEEE Trans. on Antennas and Propag., Vol. 60, 1312-1319, 2012, DOI: 10.1109/TAP.2011.2182489.
doi:10.1109/TAP.2011.2182489

8. Puskely, J., J. Lacik, Z. Raida, et al. "High-gain dielectricloaded Vivaldi antenna for Ka-band applications," IEEE Antennas and Wireless Propag. Lett., Vol. 15, 2004-2007, 2016, DOI: 10.1109/LAWP.2016.2550658.
doi:10.1109/LAWP.2016.2550658

9. Hesari, S. S. and J. Bornemann, "Wideband circularly polarized substrate integrated waveguide endfire antenna system with high gain," IEEE Antennas and Wireless Propag. Lett., Vol. 16, 2262-2265, 2017, DOI: 10.1109/LAWP.2017.2713720.
doi:10.1109/LAWP.2017.2713720

10. Mirbeik-Sabzevari, A., S. Li, E. Garay, et al. "W-band micromachined antipodal vivaldi antenna using SIW and CPW structures," IEEE Trans. on Antennas and Propag., Vol. 66, No. 11, 6352-6357, 2018, DOI: 10.1109/TAP.2018.2863098.
doi:10.1109/TAP.2018.2863098

11. Taringou, F., D. Dousset, J. Bornemann, et al. "Broadband CPW feed for millimeter-wave SIW-based antipodal linearly tapered slot antennas," IEEE Trans. on Antennas and Propag., Vol. 61, No. 4, 1756-1762, 2013, DOI: 10.1109/TAP.2012.2232270.
doi:10.1109/TAP.2012.2232270

12. Frank, M., F. Lurz, R.Weigel, et al. "Compact low-cost substrate integrated waveguide fed antenna for 122 GHz radar applications," Int. J. of Microw. and Wireless Technol., Vol. 11, 408-412, 2019, https://doi.org/10.1017/S1759078719000072.
doi:10.1017/S1759078719000072

13. Misilmani, H. M. E., T. Naous, and S. K. A. Khatib, "A review on the design and optimization of antennas using machine learning algorithms and techniques," Int. J. RF Microw. Comput. - Aided Eng., Vol. 30, No. 10, 1-28, 2020, https://doi.org/10.1002/mmce.22356.
doi:10.1002/mmce.22356

14. Cui, L., Y. Zhang, R. Zhang, et al. "A modified efficient KNN method for antenna optimization and design," IEEE Trans. Antennas Propag., Vol. 68, No. 10, 6858-6866, 2020, DOI: 10.1109/TAP.2020.3001743.
doi:10.1109/TAP.2020.3001743

15. Montaser, A. M. and K. R. Mahmoud, "Deep learning based antenna design and beam-steering capabilities for millimeter-wave applications," IEEE Access, Vol. 9, 145583-145591, 2021, DOI: 10.1109/ACCESS.2021.3123219.
doi:10.1109/ACCESS.2021.3123219

16. Mahmoud, K. R. and A. M. Montaser, "Machine-learning-based beam steering in a hybrid plasmonic nano-antenna array," J. of the Opt. Soc. of Amer. B, Vol. 39, No. 8, 2149-2163, 2022, https://doi.org/10.1364/JOSAB.458574.
doi:10.1364/JOSAB.458574

17. Mahmoud, K. R. and A. M. Montaser, "Design of multi-resonance flexible antenna array applicator for breast cancer hyperthermia treatment," IEEE Access, Vol. 10, 93338-93352, 2022, DOI: 10.1109/ACCESS.2022.3203431.
doi:10.1109/ACCESS.2022.3203431

18. Kim, J. H. and S. W. Choi, "A deep learning-based approach for radiation pattern synthesis of an array antenna," IEEE Access, Vol. 8, 226059-226063, 2020, DOI: 10.1109/ACCESS.2020.3045464.
doi:10.1109/ACCESS.2020.3045464

19. Bozzi, M., A. Georgiadis, and K. Wu, "Review of substrate-integrated waveguide circuits and antennas," IET Microw. Antennas and Propag., Vol. 5, No. 8, 909-920, 2011, DOI: 10.1049/iet-map.2010.0463.
doi:10.1049/iet-map.2010.0463

20. Mahmoud, K. R. and A. M. Montaser, "Performance of tri-band multipolarized array antenna for 5G mobile base station adopting polarization and directivity control," IEEE Access, Vol. 6, 8682-8694, 2018, DOI: 10.1109/ACCESS.2018.2805802.
doi:10.1109/ACCESS.2018.2805802

21. Mahmoud, K. R. and A. M. Montaser, "Synthesis of multi-polarised upside conical frustum array antenna for 5G mm-Wave base station at 28/38 GHz," IET Microw., Antennas Propag., Vol. 12, No. 9, 1559-1569, 2018, https://doi.org/10.1049/iet-map.2017.1138.
doi:10.1049/iet-map.2017.1138

22., Computer Simulation Technology Microwave Studio (CST MWS), Accessed: 2022, [Online], Available: https://www.3ds.com/productsservices/simulia/products/cst-studio-suite/.

23., Chollet, F., et al., Keras. Accessed: 2022, [Online], Available: https://keras.io.

24. Castaldi, G., V. Galdi, and G. Gerini, "Evaluation of a neural-networkbased adaptive beamforming scheme with magnitude-only constraints," Progress In Electromagnetics Research B, Vol. 11, 1-14, 2009.
doi:10.2528/PIERB08092303

25. Smida, A., R. Ghayoula, N. Nemri, et al. "Phased arrays in communication system based on Taguchineural networks," Int. J. Commun. Syst., Vol. 27, No. 12, 4449-4466, 2014, https://doi.org/10.1002/dac.2625.
doi:10.1002/dac.2625

26. Jang, J.-S. R., "Self-learning fuzzy controllers based on temporal back propagation," IEEE Trans. Neural Netw., Vol. 3, No. 5, 714-723, 1992, DOI: 10.1109/72.159060.
doi:10.1109/72.159060

27. Vakula, D. and N. V. S. N. Sarma, "Using neural networks for fault detection in planar antenna arrays," Progress In Electromagnetics Research Letters, Vol. 14, 21-30, 2010, doi: 10.2528/PIERL10030401.
doi:10.2528/PIERL10030401