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Beam-Steering for Narrow Beamwidth 120GHz Antenna Array
Using Deep Learning for Radar Application

Ahmed M. Montaser*

Abstract—The narrow beam-width 120GHz industry, scientific, and medical band compact substrate
integrated waveguide (SIW) driven antenna’s design and characterization are discussed in this study.
A low-cost fabrication is ensured by the employment of a single RO4350B substrate layer with SIW
feeding. A transition from SIW to a rectangular waveguide is made for measuring purposes. The
radiation pattern has been measured. By determining the right feeding phases for the 20 elements, a
Deep Neural Network (DNN) is used to softly compute the beam steering. The weighted hybrid Modified
Gravitational Search Algorithm (MGSA) — Particle Swarm Optimization (PSO) approach and neural
network with back-propagation technique are utilized to beam-steer by anticipating the appropriate
feeding phases of the antenna array elements. To evaluate the effectiveness of the approaches, a number
of sample instances are given that beam-steer the pattern in a variety of directions. In addition to
allowing for the establishment of crucial analytical equations for the synthesis of antenna arrays, the
neural network synthesis method also offers a great deal of flexibility between the system parameters
in input and output, which makes the synthesis possible due to the explicit relationship given by them.
The conventional technique of the phased array is compared with our DNN model for implementing
beam steering.

1. INTRODUCTION

Due to license-free access, high frequency, and bandwidth that enable high-resolution measurements
or high data rates, the 120GHz industrial, scientific, and medical (ISM) frequency range is extremely
appealing for radar and wireless communication applications. Every radar system needs antennas, which
are essential components. They affect the system’s bandwidth and usable range in addition to being
in charge of the spatial radiation. The antennas are frequently mounted on chips [1] or incorporated
into various packaging technologies [2] at frequencies greater than 60GHz. However, methods for
designing antennas on printed circuit boards (PCB) over 100GHz have been developed employing patch
antennas [3] and pricey high-frequency composite material. Leaky wave antennas [4–6] are frequently
used as feed when substrate integrated waveguide (SIW) constructions are used. When utilizing a leaky
wave antenna, the radiating fields are often only focused on one plane unless an array technique is
used, which uses many parallel SIW lines. The leaky wave antennas radiate with the Poynting vector
approximately in the same plane as the PCB plane.

The objective of this study is to create an appropriate antenna for a stand-alone SIW radar system
using 120GHz PCB technology that is inexpensive. Most previous published antennas often operate
at a significantly lower frequency spectrum [7–9], which is the key distinction from our study. Designs
requiring substrate cuts or holes in the substrate metallization less than 100mm are necessary for
designs encompassing frequencies up to 90GHz [10] or even 120GHz [11], which raises the cost of
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production. The antenna is built on a very inexpensive Rogers RO4350B substrate and was designed
as simple as possible to avoid relying on substrate cutouts, structures smaller than 100mm [12], or
any other configuration that would make the manufacturing process more difficult. This ensures low
manufacturing costs and quick prototyping at those very high frequencies.

The integration of Deep Learning (DL) mechanisms into an optimization approach that chooses the
optimal antenna parameters and performance is the subject of another field of study. Incorporating an
optimizer into the deep learning architecture would speed up the design and optimization process because
fewer simulations would be required. Deep learning is a potent estimating or forecasting technique that
has the benefit of learning and may deliver precise answers for a particular job. DL attempts to
model nonlinear circumstances by using a mathematical representation of the anatomy of the brain.
Therefore, the suggested DNN model is a reliable and accurate computation method as opposed to pricey
simulation and measurement. Ref. [13] presents a thorough analysis of several research publications that
deal with the design and optimization of antennas using deep learning, covering the various methods and
algorithms used to create antenna parameters based on required radiation properties and other antenna
criteria. Also, a unique modified efficient K-Nearest Neighbors (KNN) technique is shown in [14], and
this method, which is regarded as a kind of neural network, has the benefit of requiring fewer samples
of training and testing data.

The authors in [15] applied a hybrid DNN system with MGSA-PSO algorithm to design a complex
antenna with high radiation characteristics, then an array of 16 antenna elements was designed, and
then applying the DNN system to feeding phases for 16 antenna elements, to produce the required
beam-steering. In [16], the authors applied very powerful algorithms with DNN system to design a
beam forming for a 64 elements Plasmonic Nano antenna array, which led to achieving high-precision
beam steering by controlling all antennas, then the authors reduced the number of active antennas to
only 5 active antennas to make beam steering, in order to reduce the expensive feed costs, and the DNN
system once again managed to get the highest gain and excellent beam steering work by activating
only 5 active antennas from the whole array, demonstrating the strength, versatility, and efficiency of
the used prediction system. In [17], the authors designed an applicator that contained 35 antennas
working with a multi-resonance system. This array was designed with a DNN technique, which greatly
contributed to heating all tumors in the breast of different types and volumes.

The authors of [18] synthesized the radiation patterns using a patch antenna array 4 × 1 with
an inter-element spacing of 0.28λ. The radiation pattern served as the input, and the outputs — the
amplitude and phase of the antenna elements — were obtained by building a DNN. The suggested DNN
has been trained using several radiation model samples that exhibit respectable ability in generating the
radiation patterns. Due to the inherent nonlinearities associated with their radiation patterns, antennas
are generally considered to be the best possible candidates for DNNs. Neural systems are undeniably
common due to their ability to link data with current expert knowledge about issues, as well as their
accurate and quick learning and strong generalization capabilities.

In the beginning of this study, we presented a patch antenna construction that would function in the
120GHz ISM band. Surface-wave suppression, gain performance, and a narrow beam-width radiation
pattern are all improved by the introduction of SIW. The comparison of the SIW antenna’s measured
and simulated results is then displayed. A DNN with a backpropagation approach and a weighted
MGSA-PSO algorithm is also used for beam steering of a 20 antenna array operating at 120GHz by
anticipating the appropriate feeding phases. A number of instructive examples are positioned to beam-
steer the pattern in the appropriate direction.

The presented paper is organized as follows. In Section 2, the antenna design configuration is
presented. In Section 3, the antenna array configuration, a brief introduction to the DL model, and
discussion results are explained. Finally, Section 4 concludes the results.

2. ANTENNA DESIGN AND RESULTS

High-frequency circuit design is a perfect fit for SIW technology [19]. The location of the vias and the
substrate’s material qualities are the sole factors that affect the electric characteristics. Therefore, it
is not essential to use expensive PCB manufacturing techniques to obtain extremely small structures,
which are typically required in high-frequency design. One double-sided metallized RO4350B high-
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frequency substrate serves as the design’s foundation. The substrate’s height is set at 0.254mm. This
substrate’s key benefit is that it is less expensive than other high-frequency substrates.

Geometrical configuration of the proposed circularly polarized SIW cavity-backed leafed-slot
antenna is shown in Fig. 1. Its circular backed cavity is constructed by vias’ arrays on a single substrate;
the electromagnetic fields are radiated through the dielectric aperture of the SIW circular cavity. The
exact placement of via can be used for matching purposes if the antenna design fields of the cavity and
slotted patch are compatible. The SIW circular cavity greatly affects the current distribution within
the antenna parts, which greatly affects the directivity and reflection coefficient of the antenna. The
proposed antenna is implemented on a single layer substrate which provides high radiation efficiency
with enhanced impedance bandwidth. Most designs are based on a single double-sided metallized
RO4350B high-frequency substrate, and to eliminate the spurious radiation, the height of the substrate
is chosen at 0.254mm. A leaf slot is etched on a concave sides rectangular patch of length L6 and width
W7 which are printed on the bottom surface of the substrate layer, while the distance between partial
ground plane and the patch of a rectangle with concave sides is g, and by adjusting the distance g,
the amount of coupling between two resonators can be controlled. An inset feed port microstrip line
with width of W2 is used to excite the SIW cavity and radiated patch antenna. This patch content’s
x slot enhances radiation efficiency. Through both the leaf slot in the concave rectangle at the ground
plane and the x slot in the top patch, the surface current distribution inside this antenna is controlled.
The optimized leaf slot in the surface of the concave rectangular patch responds to circular polarization
antenna and improves impedance bandwidth. Based on above discussion, the microstrip patch is excited
at dominant mode through proximity effect by the SIW cavity. As a result, two resonators working at
their fundamental modes radiate electromagnetic fields. By a proper choice of resonators dimensions,

(a)

(c)(b)

Figure 1. Proposed antenna structure. (a) 3D view. (b) Top view, and (c) Back view.
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resonant frequencies of the cavity and patch are merged, and wide bandwidth is achieved.
The MGSA-PSO algorithm [20, 21] was used to optimize the proposed antenna’s top patch, partial

ground plane, and the leaf slot etched on concave sides rectangular patch such that it would resonate
at 120GHz with good gain, efficiency, and an Axial Ratio (AR) of less than 3 dB. Utilizing Computer
Simulation Technology (CST)-Microwave Studio (MWS) [22], the antenna is fully modelled, and its
dimensions are optimized using a MATLAB-coded optimization technique. The improved antenna will
also be modeled using MATLAB code with the finite difference time domain (FDTD) computational
approach to evaluate the results. The goal function shown below is taken into account in this situation
to optimize antenna gain (G) and radiation efficiency (e) while minimizing return loss (S11), AR, and
side lobe level (SLL) at the operational frequency range.

Obj1 = [min{S11(f) + AR(f) + |SLL|dB}+max{G(f) + e(f)}]f = 120GHz (1)

A circularly polarized antenna that is matched at 120GHz and has a good gain and high efficiency
can be produced by optimizing the antenna’s dimensions. The best calculated values of the optimized
antenna dimensions are shown in Table 1 together with the choice space for the variables.

Table 1. The initial and optimized dimensions for proposed antenna. (all units in millimeter).

Variable initial Value
Decision space

Best value
from to

W1 3.5 2.5 4.5 3.85

W2 0.3 0.25 0.5 0.35

W3 1.5 1 2 1.91

W4 0.45 0.3 0.7 0.52

W5 3 2 4 3.68

W6 0.2 0.15 0.25 0.19

W7 3 2.5 4 3.18

W8 2.5 2 3.5 2.71

L1 4.5 3.5 5.5 5.01

L2 2 1.5 3 2.24

L3 0.75 0.5 1 0.83

L4 1.5 1 2 1.92

L5 1.25 0.5 1.5 1.09

L6 2 1.5 2.5 1.85

L7 1 0.75 1.5 1.3

L8 0.4 0.1 0.75 0.51

L9 0.4 0.1 0.75 0.28

L10 0.4 0.1 0.75 0.31

R1 0.35 0.3 0.75 0.51

R2 0.35 0.3 0.75 0.42

S1 0.75 0.5 0.2 0. 98

g 0.3 0.1 0.9 0.13

The simulated and measured proposed antenna characteristics are shown in Fig. 2. The simulated
and measured free-space reflection coefficients at 120GHz are presented in Fig. 2(a) for antenna design.
The simulation was designed for the proposed antenna in two techniques, the first using the Computer
Simulation Technology (CST) Microwave Studio package and the second using the FDTD method
written with MATLAB code, to confirm the results. A rotating stage and a vector network analyzer
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(a) (b)

(c) (d)

Figure 2. Proposed antenna radiation characteristics. (a) Reflection coefficient. (b) Realized gain.
(c) Radiation efficiency and axial ratio, and (d) Radiation pattern in X-Y plane.

(VNA) are used to characterize the antenna. A transition from rectangular waveguide (WR-06) to
SIW is required to link the antenna to the VNA. A single slot is drilled into the copper of the SIW
line to enable coupling from a rectangular waveguide onto the substrate due to the high frequency
and therefore very compact structures. The rectangular waveguide’s flange may be attached to the
SIW line using proper drills, which are provided. The simulations run with the transition and the
measured reflection coefficients agree. The dimensions of the slot, which are susceptible to production
tolerances, have a significant impact on the frequency behavior of this transition. However, the ISM
band’s frequency range of 110 to 130GHz is well covered by the measurements, and the antenna displays
acceptable matching. Photographs of the fabricated antenna inserts are shown in Figs. 2(a) and (b).
By comparing the simulation with measured results, there was a good agreement between measured
results and both the simulation results obtained from the CST package and FDTD method over a wide
frequency range. It is crucial to stress that switching from a rectangular waveguide to a SIW is solely
used for component characterization and is not necessary for the final system.

Figure 2(b) shows the comparison between simulated and measured realized gains, and it can
be noticed that the measured gain is in good agreement with the numerical results. The measured
realized gain for antenna is close to the simulated value of 7.52 dBi at 120GHz. As for the antenna
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radiation efficiency, it has exceeded 86% at 120GHz, and this percentage is very excellent in this range
of frequencies. Full responsibility for the amount of high efficiency is the metallization area in the upper
patch and the x slot engraved in it. It can be observed that the absolute axial ratio has exceeded 3 dB
from 117.6 to 122.5GHz, which makes the antenna work with circular polarity in this range; the part
responsible for the axial ratio characteristic is the leaf slot in the concave rectangle because the current
distribution on the edges of this leaf is constantly changing. The proposed antenna efficiency and axial
ratio are shown in Fig. 2(c).

Figure 2(d) shows normalized radiation pattern for the proposed antenna. It can be observed that
this antenna has narrow band end-fire radiation pattern, and the Half Power Beamwidth (HPBW)
is 46◦, which makes the proposed antenna very suitable for the purposes of radar applications, often
requiring a narrow beamwidth with high radiation power and gain to accurately detect objects in high
resolution details from long distances. The measured results of the radiation pattern are consistent with
the simulations and show the desired radiation behavior over the whole operating frequency range. The
antenna provides low side lobe levels in the directional plane.

3. ANTENNA ARRAY CONFIGURATION AND DEEP LEARNING

An antenna array is a setup of separate radiating components that are placed in space and have
the ability to generate directional radiation patterns. Let’s assume that there are antenna radiators
positioned symmetrically along the y-axis for a linear antenna array, as illustrated in Fig. 3. The array
consists of 20 circularly polarized elements of the optimized antenna operating at 120GHz. With an
identical distance of 1mm between any two succeeding elements, the elements are evenly dispersed in
a linear design. The suggested antenna array is constructed to combine the various beam patterns. By
altering the phase of the input signal allotted to each antenna element, the radiation pattern may be
guided in the desired direction with a high gain and a side-lobe level as low as feasible. The feeding
stages of DNN learning are therefore thought to be optimized by the MGSA-PSO algorithm.

Figure 3. 3D view of antenna array structure.

DL is a subclass of artificial intelligence (AI) that is simply a neural network having three or maybe
more layers [13]. DL neural networks are made up of several layers of connection weights, with each
layer improving and perfecting the forecast or classification. The movement of computations through
the network is referred to as forward propagation. The input and output layers of a deep neural network
are the steps that are visible. The final prediction or classification is carried out by the deep learning
model in the output layer after the data has been processed in the input layer. When a model is trained,
a technique called backpropagation is used to modify the weights of the function by iteratively traveling
back through the layers and using tools like gradient descent to produce prediction errors. A neural
network may make predictions and correct any errors by using a combination of forward propagation
and backpropagation. Over time, the algorithm becomes more accurate.
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Figure 4. The neural beam-former architecture.

For beam-steering, DL is used in this study on a 120GHz antenna array. With a thorough
examination of the NN’s structure as shown in Fig. 4, Tensorflow and Keras framework [23] are utilized
to build the model, while Python version 3.8 is used to implement the DNN technique. Our research
reveals that it is made up of several layers, including an input layer, which is thought of as a foundation
for information, an output layer, and hidden inner layers, which seem to be layers with changeable
reconfiguration. The neurons in one layer of the network do not share information with one another
since each layer has a distinct structure and function. These networks need supervised learning, but the
Multilayer Perceptron (MLP) network may be fed by one hidden layer. In this hidden layer, each MLP
node has a specific purpose. The input vector’s dimension [24] is the same as the number of nodes, S,
where T is the index of the hidden layer, and R is the index of the input layer with R = 1, 2, . . . , S.
B = 1, 2, . . . , Z is the index of the output layer.

The smallest error between the neural model output yB and the training data DataB is used to
determine the interconnect weights. The training procedure’s objective is to optimize the network
connection weights ωrt and ωbt in order to reduce the error function Error(g), which is defined as:

Error (g) =
1

2

Z∑
B=1

C∑
T=1

S∑
R=1

[yB (xr,ωrt,ωbt)−DataB]
2 (2)

where G = 1, 2, . . . , g is the index of the training set. The DNN is trained on a finite training set of
G, forming the input vectors {G = 1, 2, . . . , 20}, where G ∈ [500, 12000], to learn the input output
relationship [25]. Clearly, if we set the selection probability of some datapoints, then, we reduce the
size of the training set by eliminating these datapoints from the batch selection, batch size = 128. A
smaller training set is typically easier to fit but also to over-fit. Generally, the quantity of training
samples sent to the DNN networks is known as the batch size. One or more batches can be created
from a training dataset. The learning algorithm is known as batch gradient descent when all training
examples are supplied in a single batch. The learning algorithm is known as stochastic gradient descent
when the batch size is one. The learning algorithm is known as mini-batch gradient descent when the
batch size is greater than one and lower than the training size. It is more common to use 32, 64, and
128 batch sizes in mini-batch gradient descent. The larger batches increase network accuracy.

A small amount of deviation from the goal outcome is necessary for DNN training. In this work,
a mini-batch gradient descent based technique is employed to accomplish this training. The system
created here has 20 output neurons and 22 input neurons to address this issue. The training parameters
are listed in Table 2.

From the previous table, the quantity of epochs indicates how many times the training dataset has
been traversed. Every epoch suggests that the training sample has the ability to update the internal
model parameters. One or more batches might be present. It is possible for there to be zero or infinitely
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Table 2. Training parameters of DNN.

Parameter Value

Training Data 75%

Testing Data 15%

Evaluating Data 10%

Input Neuron 22

Hidden layer 3

Hidden Neuron 36

Output Neuron 20

Epochs 12000

Coefficient of training 0.04

The activation function at

the hidden nodes f1
Sigmoid tan

The activation function at

the output nodes f2
Sigmoid tan

many epochs. In most cases, hundreds or thousands of epochs are picked. This enables the network to
sufficiently lower the error. A developer must look at the learning curves of error and accuracy to select
the best epoch value. These curves can be used to identify whether the model has learnt too much, too
little, or is well prepared for training.

Figure 5(a) represents the training, validation, and testing performance of the proposed neural
networks structure. The performance plot of the neural network is shown in Fig. 5(b), and the gradient
at 12000 epoch is 5.61×10−5. One of the most crucial factors utilized to fine-tune the models is learning
rate. It updates network weights to reduce error. Model performance would suffer if the learning rate
was set too low or too high. A low learning rate will result in little network weight updates and slow
down training, whereas a high learning rate will result in divergent error behavior. In actual training, a
high learning rate should be used at first since random weights at the beginning are far from ideal and
learning rates will fine-tune the network weights by lowering their value during training. The learning
process may begin with a large value, such as 0.1, and move on to smaller values, such as 0.01, 0.001,
etc. For each iteration, the weights ωrt and ωbt are modified by:

∆ωv = −η
∂Error

∂ωv
(3)

Sector-width intervals of 10◦ were employed in the training set for each scenario, where the ωv

stands for the output layer weights. The mean square error performance of the MLP Network is shown
in Fig. 6.

The capability of generalization is one of neural networks’ major benefits. Accordingly, a trained
network will categorize new data in the same category as the learning data, as if it has never encountered
it before. Only a small portion of all imaginable neural network patterns are available to developers in
the majority of real-world applications. The dataset should be divided into three parts for the optimal
generalization:

• The training set is used to train a neural network: The dataset’s error is reduced throughout
training.

• A neural network’s performance on patterns that were not taught during the learning phase is
assessed using the validation set.

• A test set for assessing a neural network’s general effectiveness.

The two most significant activities in this situation are network architecture and network testing
(generalization). In order to create a network, input vectors xg, where g = 1, 2, . . . , 20 are initially
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(a)

(b)

Figure 5. Neural networks results. (a) Validation and training performance of DNN. (b) Performance
plot of the neural network.

Figure 6. Neural network training procedure.

formed. Next, input/output pairs {xg, φq}, where q = 1, 2, . . . , 22, are generated. We create x′g vectors
for the testing input samples while testing a network and then provide the neural networks the input
vectors x′g. Finally, the output of the network is discovered. The number of hidden neurons selected
depends heavily on the characteristics of the nonlinearity that must be replicated. As listed in Table 2,
36 hidden neurons in this investigation provided evidence that the procedure was convergent, and the
neural model produced was accurate. Hidden neurons are the number of neurons in the hidden layer.
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Figure 7. Training curves in terms of the mean square errors (MSE) for different neural networks with
varying hidden neurons.

Because it affects the performance of the DNN model, choosing the optimal number of neurons for
the hidden layer is crucial. To choose a proper NN topology, five networks with different numbers of
hidden neurons (28, 32, 36, 40, and 44 neurons) are studied. The training curves in terms of the mean
square errors are shown in Fig. 7. It can be noticed that when the neural networks are used, if the
number of their hidden neurons is equal to 28 or 32, the mean square error (MSE) values will be equal
to 3.75× 10−3 and 5.18× 10−4, respectively. The MSE in these two cases cannot converge to the lowest
value, which indicates that these two DNN networks are not accurate enough to use and predict the
output. Generally, under-fitting will result in large training errors when there are not enough hidden
neurons, as clear in cases 28 and 32. As for the remaining three cases (36, 40, and 44 neurons), the
MSE is almost the same, which is equal to 5.61 × 10−5, which indicates that this network should be
more accurate to be used to predict the correct directions. Low training errors will be the result of
over-fitting if there are too many hidden neurons. It will unnecessarily slow down the training and
frequently lead to poor generalization. As long as the last three cases have almost the same result,
the DNN network that has the least number of neurons is chosen (36 neurons), so that it has ease in
calculations, computational facility, and is not time-consuming. Finally, the quantity of input training
instances determines the size of the hidden neurons.

The neuron used in this network is the continuous nonlinear neuron, whose activation functions
f1 and f2 are tan sigmoid functions [26]. Divide the area into 40 sectors and repeat every 4 degrees
between −80◦ and 80◦ degrees inclusively to investigate the ideas discussed in the previous section. By
adding more element arrays, one may create more precise space division sectors. The neural network’s
input vector is a 40-bit binary code (one bit for each sector). A source in the sector with a bin input of
(+1) is precisely on (main lobe). Then convergence might be accomplished more quickly.

The following examples demonstrate how the suggested method, as illustrated in Fig. 6, has been
fully evaluated. The excitation voltages were tuned with equal amplitudes and varying phases to
synthesize the 20-element antenna array [27]. The anticipated simulation results for the reference
antenna must show radiation patterns with low SLL and large lobes pointing in the general direction of
important signal. The database holds all the data (input/output) generated during simulation using the
MGSA-PSO algorithm, and the application specifies the required radiation pattern between −80◦ and
80◦. The proposed antenna array is analyzed using CST-MWS and linked with MGSA-PSO algorithm,
Matlab-coded, to optimize the antenna array phases. In order to accomplish the target, the objective
function listed below is used. This objective function optimized the 17 required orientations of the
antenna array from −80◦ to 80◦ as training data for the DL technique.

Obj2 = max |Et(θi, ϕi)|+min(|SLL|dB) (4)
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Figure 8. Training state of the network created during training.

Figure 8 displays the regression’s visual result. The objectives are lined up with the network
outputs as open circles. Perfect alignment and best linear fit are depicted by the solid line (output
equal to the targets). The DNN model with five layers was trained to provide the beam steering for
phase feeding for each antenna element in accordance with the relationship between the input and the
target. A 75% from available data are employed for training process while 25% from available data are
used for validation and testing process in the DNN model. The DNN model has calculated the average
percentage errors (APEs) for the beam-steering direction using the following equation:

APE =

∑∣∣∣∣ϕTruth − ϕPred

ϕTruth

∣∣∣∣× 100

Total number of Scenarios
% (5)

where ϕTruth is the desired beam-steering direction that can be achieved by assigning the optimal phases.
The suggested deep-learning technique is used to determine the optimal phases, which beam-steers the
pattern in the direction ϕPred , and the total number of scenarios is the total number of trained or tested
scenarios according to the kind of computed APE.

The DNN model has calculated the average percentage errors (APE) for the steering directions,
as shown in Fig. 9. It is obvious that for every deep learning application, the number of training
points assigned has an impact on the APE value. In contrast, increasing the number of training points
enhances the system’s accuracy, and vice versa. The scatter diagrams of the ground truth and prediction
angle steering directions results for the training and testing datasets are displayed in Fig. 10 in order
to visually understand the correlations between the results. A suitable APE of 0.253% was acquired as
for the training data, and an appropriate APE of 0.279% was obtained as for the testing data based on
Fig. 9, which shows the topology of calculating the APE for DNN model. It is obvious that the points
will follow a linear pattern, indicating that the results have a strong linear association.

The 17 desired orientations of the linear array with N = 20 elements were carried out to show
the efficacy of the technique described in the preceding section for guiding single beams in the desired
direction by managing the phase feeding of each array element. The numerical results are demonstrated
that NNs using the MGSA-PSO algorithm have exceptional phase control capabilities for beam pattern
generation in a variety of circumstances as shown in Fig. 11. To validate the results of the MGSA-PSO
algorithm for antenna array, one run of the training results (in the case that the desired angle is 0◦)
was compared with FDTD method design for the same case as shown in Fig. 12. It can be noticed that
the results are completely compatible between the trainings with the MGSA-PSO algorithm and the
FDTD method.
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Figure 9. The topology of the calculating APE.

(a) (b)

Figure 10. Scatter diagrams of the ground truth and prediction angle steering directions by the DNN
model for (a) Training data. (b) Test data.

After the training phase, it is crucial to test the neural network on a database that was not
utilized for learning. This test enables both the evaluation of neural system performance and the
identification of problematic data types. In the event that the performance (distinctive characteristics
or representativeness of each data class) is subpar, it will either update the network architecture or
modify the learning base.

In order to evaluate the suggested approach for the synthesis of a linear array, several simulation
scenarios are investigated at φ = −73◦, −22◦, 38◦, and 66◦. The simulated results for the built-in
antenna array setup with 20 elements at 120GHz using the DNN technique are displayed in Fig. 13.
The outcomes show that the synthesized and intended requirements are very closely related. This
demonstrates the effectiveness of the suggested action. The DNN provides the best solutions for
situations where nonlinear modeling of complex data needs to be simulated because of its better learning,
generalization, parallel computing, and error tolerance qualities. To more clearly demonstrate the
benefits of our DNN model, we compare the conventional method (such as MIMO phased array using
Complete Wave Simulations using CST) and our DNN predicted technique in terms of realized gain,
SLL, axial ratio, HPBW, radiation efficiency, time-consuming, iterations of computation in CST, the
difference between computed radiation and target radiation, and finally accuracy rate. This comparison
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Figure 11. Radiation pattern of 20 elements antenna array optimized using MGSA-PSO with respect
to minimum SLL.

Figure 12. Validate the result of the MGSA-PSO algorithm with FDTD method for antenna array.

is performed for four test scenarios at angles φ = −73◦, −22◦, 38◦, and 66◦. Our DNN model technique
has achieved a remarkable superiority over the conventional method (MIMO) in terms of realized gain,
radiation efficiency, SLL, axial ratio, and HPBW, and generates results about 544.4 times faster than
the traditional one. As can be seen, this is due to the many iterations the MGSA-PSO algorithm does.
We also calculate the discrepancy between estimated radiation and target radiation, which indicates the
accuracy rate of the radiation outcomes. In particular, the accuracy rate for the top 12% of samples
might go over. In reality, as deep learning models can only generate probabilistic predictions, they
may not be exact enough to achieve 100% accuracy, necessitating extra optimization procedures. From
the above, it can be concluded that the DNN model is better than the conventional method, either
from the aspect of computational iterations and quantities, time consumption, or result accuracy rate.
Consequently, the outcomes validate the DNN model, and it offers an effective method in a variety of
application environments; the comparison is listed in Table 3. A DNN, which can be trained to deal
with any number of elements, separation, and excitation, is used in this technique. Once the network
has been trained, the parameters with regard to the input may be discovered.



48 Montaser

Table 3. Phase array comparison between conventional method (MIMO) and our DNN predicted.

Items

Test no. 1
Desired angle

−37◦

Test no. 2
Desired angle

−22◦

Test no. 3
Desired angle

38◦

Test no. 4
Desired angle

66◦

MIMO DNN MIMO DNN MIMO DNN MIMO DNN
Realized gain (dBi) 16.9 19.5 17.5 20.4 17.3 20.1 17.1 19.8

Radiation Efficiency % 71.3 80.9 75.6 84.8 74.5 82.1 73.4 81.5
SLL (dB) −8 −14 −11 −19 −10 −17 −9 −15

|Axial ratio| (dB) 3.2 2.8 1.8 1.5 2.3 1.9 2.9 2.4
HPBW (◦) 35.2 9.1 30.7 7.5 33.6 8.4 34.5 8.8

Time-consuming (min) 937 2.1 980 1.8 915 2.3 955 1.9
Iterations of computation 463 1 491 1 458 1 432 1
The difference between
computed radiation and

target radiation (◦)
9.4 0.8 5.1 0.4 6.8 0.7 8.3 0.5

Accuracy rate % 79 91 84 95 82 93 80 92

(a) (b)

(c) (d)

Figure 13. 3D Radiation pattern of several tested scenarios. (a) Beam steering at angle−73◦. (b) Beam
steering at angle −22◦. (c) Beam steering at angle 38◦, and (d) Beam steering at angle 66◦.
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4. CONCLUSION

This paper presents a compact, inexpensive SIW antenna for the 120GHz ISM band. One RO4350B
laminate is used to build the antenna. A realized gain around 7.52 dBi was measured for the proposed
antenna and HPBW for main loop around 46◦. This makes the proposed antenna very suitable for the
purposes of radar applications, often requiring a narrow beam width with high radiation power and
gain to accurately detect objects in high resolution details from long distances. The measured radiation
pattern and computational results are in excellent agreement and demonstrate good concentration for
a one element antenna. Furthermore, a 20 antenna element array working at 120GHz has been used
to beam-steering approach. The antenna array’s radiation pattern is beam-steered using the DNN
model. Results indicate that the required and synthesized specifications are in accord. Compared to
the conventional method, our DNN model achieved a remarkable superiority in terms of realized gain,
SLL, axial ratio, HPBW, radiation efficiency, iterations of computation, accuracy rate, and savings in
processing time. This technique utilizes a neural network that may be trained for any element count,
spacing, or excitation. The network can determine the parameters with regard to the input once it has
been trained.
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