Vol. 129
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-02-09
High-Power Ka-Band Extended Interaction Klystron Design Based on Internal Coupling Cavity
By
Progress In Electromagnetics Research C, Vol. 129, 245-256, 2023
Abstract
A high-efficiency interaction circuit for Ka-band klystron has been proposed based on a novel internal coupling cavity. Driven by a 25 kV, 5 A pencil beam, the interaction circuit can produce a peak output power of 38.4 kW at Ka-band, and the electronic efficiency is 30.7%. The electromagnetic properties of the unequal slot multi-gap cavity and internal coupling cavity have been studied and compared. The internal coupling cavity demonstrated a higher coupling coefficient and characteristic impedance than the unequal slot multi-gap cavity, which can improve the circuit efficiency. Stability and pattern analysis have been performed on the output cavity. A four-gap output cavity has been designed. Simulation results show that there is no mode competition and oscillation in the output cavity. The corresponding beam optics has also been designed to produce the required beam. Compared with the existing work, the interaction circuit can produce almost twice the output power with the same beam voltage and Brillouin focusing magnetic field. The efficiency is also improved by 6 percent.
Citation
Bingchuan Xie, Rui Zhang, Yong Wang, Xu Zhang, Xiudong Yang, Yunfeng Liao, and Zhihui Geng, "High-Power Ka-Band Extended Interaction Klystron Design Based on Internal Coupling Cavity," Progress In Electromagnetics Research C, Vol. 129, 245-256, 2023.
doi:10.2528/PIERC22111008
References

1. Xu, X., X. Yuan, H. Li, et al. "Design of a G-band extended interaction klystron based on a three-coupling-hole structure," IEEE Trans. Electron Devices, Vol. 69, No. 3, 1368-1373, 2022, doi: 10.1109/ted.2021.3138840.
doi:10.1109/TED.2021.3138840

2. Guo, N., Q. Xue, Z. Qu, et al. "Study of a 0.34-THz ladder-type extended interaction klystron with narrow coupling cavities," IEEE Trans. Electron Devices, Vol. 68, No. 11, 5851-5857, 2021, doi: 10.1109/TED.2021.3114392.
doi:10.1109/TED.2021.3114392

3. Chodorow, M. and T. Wessel-Berg, "A high-efficiency klystron with distributed interaction," IRE Transactions on Electron Devices, Vol. 8, No. 1, 44-55, 1961.
doi:10.1109/T-ED.1961.14708

4. Yaogen, D., Design, Manufacure and Application of High Power Klystron, National Defense Industry Press, 2010.

5. Zhao, D., W. Gu, X. Hou, G. Liu, Q. Xue, and Z. Zhang, "Demonstration of a high-power Ka-band extended interaction klystron," IEEE Trans. Electron Devices, Vol. 67, No. 9, 3788-3794, 2020, doi: 10.1109/TED.2020.3008881.
doi:10.1109/TED.2020.3008881

6. Wei Yuan, C. and C. Kwo Ray, "A high-duty Ka-band extended interaction klystron," 2008 IEEE International Vacuum Electronics Conference, 201-202, April 22-24, 2008, doi: 10.1109/IVELEC.2008.4556337.

7. Cai, J. C., I. Syratchev, and G. Burt, "Design study of a high-power Ka-band high-order-mode multibeam klystron," IEEE Trans. Electron Devices, Vol. 67, No. 12, 1-7, 2020, doi: 10.1109/TED.2020.3028348.
doi:10.1109/TED.2020.3028348

8. John Pasour, E. W., K. T. Nguyen, A. Balkcum, F. N. Wood, R. E. Myers, and F. Baruch Levush, "Demonstration of a multikilowatt, solenoidally focused sheet beam ampli er at 94 GHz," IEEE Trans. Electron Devices, Vol. 61, No. 6, 1630-1636, 2014, doi: 10.1109/TED.2013.2295771.
doi:10.1109/TED.2013.2295771

9. Gamzina, D., L. R. Barnett, B. Ravani, and N. C. Luhmann, "Mechanical design and manufacturing of W-band sheet beam klystron," IEEE Trans. Electron Devices, 1-8, 2017, doi: 10.1109/TED.2017.2690642.

10. Fujisawa, K., "The Laddertron - A new millimeter wave power oscillator," IEEE Trans. Electron Devices, Vol. 11, No. 8, 381-391, 1964.
doi:10.1109/T-ED.1964.15346

11. Li, S., C. Ruan, A. K. Fahad, P. Wang, Z. Zhang, and W. He, "Novel coupling cavities for improving the performance of G-band ladder-type multigap extended interaction klystrons," IEEE Transactions on Plasma Science, Vol. 48, No. 5, 1350-1356, 2020.
doi:10.1109/TPS.2020.2982957

12. Xie, B., R. Zhang, Y. Wang, et al. "Design of a high-power V-band klystron with internal coupling multigap cavity," IEEE Trans. Electron Devices, Vol. 69, No. 5, 2644-2649, 2022, doi: 10.1109/TED.2022.3159260.
doi:10.1109/TED.2022.3159260

13. Li, R., C. Ruan, A. K. Fahad, C. Zhang, and S. Li, "Broadband and high-power terahertz radiation source based on extended interaction klystron," Scientific Reports, Vol. 9, No. 1, 2019.
doi:10.1038/s41598-019-39456-z

14. Li, R., C. Ruan, and H. Zhang, "Design and optimization of G-band extended interaction klystron with high output power," Physics of Plasmas, Vol. 25, No. 3, 033107, 2018, doi: 10.1063/1.5012018.
doi:10.1063/1.5012018

15. Shin, Y. M., J. X. Wang, L. R. Barnett, and N. C. Luhmann, "Particle-in-cell simulation analysis of a multicavity W-band sheet beam klystron," IEEE Trans. Electron Devices, Vol. 58, No. 1, 251-258, 2010.
doi:10.1109/TED.2010.2082544