1. Xu, X., X. Yuan, H. Li, et al. "Design of a G-band extended interaction klystron based on a three-coupling-hole structure," IEEE Trans. Electron Devices, Vol. 69, No. 3, 1368-1373, 2022, doi: 10.1109/ted.2021.3138840.
doi:10.1109/TED.2021.3138840
2. Guo, N., Q. Xue, Z. Qu, et al. "Study of a 0.34-THz ladder-type extended interaction klystron with narrow coupling cavities," IEEE Trans. Electron Devices, Vol. 68, No. 11, 5851-5857, 2021, doi: 10.1109/TED.2021.3114392.
doi:10.1109/TED.2021.3114392
3. Chodorow, M. and T. Wessel-Berg, "A high-efficiency klystron with distributed interaction," IRE Transactions on Electron Devices, Vol. 8, No. 1, 44-55, 1961.
doi:10.1109/T-ED.1961.14708
4. Yaogen, D., Design, Manufacure and Application of High Power Klystron, National Defense Industry Press, 2010.
5. Zhao, D., W. Gu, X. Hou, G. Liu, Q. Xue, and Z. Zhang, "Demonstration of a high-power Ka-band extended interaction klystron," IEEE Trans. Electron Devices, Vol. 67, No. 9, 3788-3794, 2020, doi: 10.1109/TED.2020.3008881.
doi:10.1109/TED.2020.3008881
6. Wei Yuan, C. and C. Kwo Ray, "A high-duty Ka-band extended interaction klystron," 2008 IEEE International Vacuum Electronics Conference, 201-202, April 22-24, 2008, doi: 10.1109/IVELEC.2008.4556337.
7. Cai, J. C., I. Syratchev, and G. Burt, "Design study of a high-power Ka-band high-order-mode multibeam klystron," IEEE Trans. Electron Devices, Vol. 67, No. 12, 1-7, 2020, doi: 10.1109/TED.2020.3028348.
doi:10.1109/TED.2020.3028348
8. John Pasour, E. W., K. T. Nguyen, A. Balkcum, F. N. Wood, R. E. Myers, and F. Baruch Levush, "Demonstration of a multikilowatt, solenoidally focused sheet beam amplier at 94 GHz," IEEE Trans. Electron Devices, Vol. 61, No. 6, 1630-1636, 2014, doi: 10.1109/TED.2013.2295771.
doi:10.1109/TED.2013.2295771
9. Gamzina, D., L. R. Barnett, B. Ravani, and N. C. Luhmann, "Mechanical design and manufacturing of W-band sheet beam klystron," IEEE Trans. Electron Devices, 1-8, 2017, doi: 10.1109/TED.2017.2690642.
10. Fujisawa, K., "The Laddertron - A new millimeter wave power oscillator," IEEE Trans. Electron Devices, Vol. 11, No. 8, 381-391, 1964.
doi:10.1109/T-ED.1964.15346
11. Li, S., C. Ruan, A. K. Fahad, P. Wang, Z. Zhang, and W. He, "Novel coupling cavities for improving the performance of G-band ladder-type multigap extended interaction klystrons," IEEE Transactions on Plasma Science, Vol. 48, No. 5, 1350-1356, 2020.
doi:10.1109/TPS.2020.2982957
12. Xie, B., R. Zhang, Y. Wang, et al. "Design of a high-power V-band klystron with internal coupling multigap cavity," IEEE Trans. Electron Devices, Vol. 69, No. 5, 2644-2649, 2022, doi: 10.1109/TED.2022.3159260.
doi:10.1109/TED.2022.3159260
13. Li, R., C. Ruan, A. K. Fahad, C. Zhang, and S. Li, "Broadband and high-power terahertz radiation source based on extended interaction klystron," Scientific Reports, Vol. 9, No. 1, 2019.
doi:10.1038/s41598-019-39456-z
14. Li, R., C. Ruan, and H. Zhang, "Design and optimization of G-band extended interaction klystron with high output power," Physics of Plasmas, Vol. 25, No. 3, 033107, 2018, doi: 10.1063/1.5012018.
doi:10.1063/1.5012018
15. Shin, Y. M., J. X. Wang, L. R. Barnett, and N. C. Luhmann, "Particle-in-cell simulation analysis of a multicavity W-band sheet beam klystron," IEEE Trans. Electron Devices, Vol. 58, No. 1, 251-258, 2010.
doi:10.1109/TED.2010.2082544