Vol. 128
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-12-26
Deep Learning Algorithm for Automatic Breast Tumour Detection and Classification from Electromagnetic Scattering Data
By
Progress In Electromagnetics Research C, Vol. 128, 39-48, 2023
Abstract
Breast cancer is, by far, the most diagnosed disease for the death of women worldwide. Researchers are working with an alternative technology to detect the tumours before it reaches the terrible stage because of the numerous limitations in the current imaging approach. This article suggests a promising technique by utilising non-ionizing microwave signal and artificial intelligence especially deep learning algorithms for early detection of breast cancer. This contribution will present a method to detect and classify the tumour category using backscatter signals obtained from antenna simulation in CST microwave studio software. The post-processed scattering parameters are utilized to create image through MATLAB programming environment. The high intensity in the image represents the precise position of tumour. The automatic classification of tumour is achieved by YOLOv5 deep learning model from the created microwave images. A training dataset with fifty image samples are formed by preprocessing and then augmentation is applied to create final dataset with 1000 samples. This approach can identify the location and type of early-stage tumour with size of 5 mm.
Citation
Lalitha Kandasamy, and Shreya Reddy K, "Deep Learning Algorithm for Automatic Breast Tumour Detection and Classification from Electromagnetic Scattering Data," Progress In Electromagnetics Research C, Vol. 128, 39-48, 2023.
doi:10.2528/PIERC22110606
References

1. Brenner, D. R., H. K. Weir, A. A. Demers, L. F. Ellison, C. Louzado, A. Shaw, D. Turner, R. R. Woods, and L. M. Smith, "Projected estimates of cancer in Canada in 2020," Canadian Medical Association Journal, Vol. 192, No. 9, E199-E205, 2020.
doi:10.1503/cmaj.191292

2. Canadian Cancer Statistics Advisory Committee "Canadian cancer statistics 2019,", Toronto, ON, Canadian Cancer Society, 2019, Accessed: 2020-04-09.

3. Gøtzsche, P. C. and K. J. Jørgensen, "Screening for breast cancer with mammography," Cochrane Database of Systematic Reviews, Vol. 22, No. 1469-493X (Electronic), CD001877, 2013.

4. Bourqui, J., E. C. Fear, and S. Member, "System for bulk dielectric permittivity estimation of breast tissues at microwave frequencies," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 9, 3001-3009, 2016.
doi:10.1109/TMTT.2016.2586486

5. Kelly, K. M., J. Dean, W. S. Comulada, and S. J. Lee, "Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts," European Radiology, Vol. 20, No. 3, 734-742, 2010.
doi:10.1007/s00330-009-1588-y

6. Lalitha, K. and J. Manjula, "Design of UWB antipodal vivaldi antenna with parasitic patch for microwave head imaging system," 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS), 1-6, 2022, doi: 10.1109/IC3SIS54991.2022.9885397.

7. Fouda, A. and F. L. Teixeira, "Ultra-wideband microwave imaging of breast cancer tumours via Bayesian inverse scattering," Journal of Applied Physics, Vol. 115, No. 6, 1-8, 2014.
doi:10.1063/1.4865327

8. Srinivas, K., G. R. Rao, and A. Govardhan, "Rough-fuzzy classifier: A system to predict the heart disease by blending two different set theories," Arab J. Sci. Eng., Vol. 39, 2857-2868, 2014, https://doi.org/10.1007/s13369-013-0934-1.
doi:10.1007/s13369-013-0934-1

9. Edwards, K., J. LoVetri, C. Gilmore, and I. Jeffrey, "Machine-learning-enabled recovery of prior information from experimental breast microwave imaging data," Progress In Electromagnetics Research, Vol. 175, 1-11, 2022, doi:10.2528/PIER22051601.
doi:10.2528/PIER22051601

10. Lai, J. C. Y., C. B. Soh, E. Gunawan, and K. S. Low, "Homogeneous and heterogeneous breast phantoms for ultra-wideband microwave imaging applications," Progress In Electromagnetics Research, Vol. 100, 397-415, 2010.
doi:10.2528/PIER09121103

11. Selvaraj, V., J. B. J. J. Sheela, R. Krishnan, L. Kandasamy, and S. Devarajulu, "Detection of depth of the tumor in microwave imaging using ground penetrating radar algorithm," Progress In Electromagnetics Research M, Vol. 96, 191-202, 2020, doi:10.2528/PIERM20062201.
doi:10.2528/PIERM20062201

12. Lalitha, K. and J. Manjula, "Novel method of characterization of dispersive properties of heterogeneous head tissue using microwave sensing and machine learning algorithms," Advanced Electromagnetics, Vol. 11, No. 3, 84-92, Oct. 2022, doi:10.7716/aem. v11i3.1821.
doi:10.7716/aem.v11i3.1821

13. Khoshdel, V., M. Asefi, A. Ashraf, and J. LoVetri, "Full 3D microwave breast imaging using a deep-learning technique," J. Imag., Vol. 6, No. 8, 80, Aug. 2020.
doi:10.3390/jimaging6080080

14. Redmon, J., S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection," Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 779-788, Jun. 2016.