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Deep Learning Algorithm for Automatic Breast Tumor Detection
and Classification from Electromagnetic Scattering Data
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Abstract—Breast cancer is, by far, the most diagnosed disease for the death of women worldwide.
Researchers are working with an alternative technology to detect tumors before they reach a terrible
stage because of the numerous limitations in the current imaging approach. This article suggests a
promising technique by utilising non-ionizing microwave signal and artificial intelligence especially deep
learning algorithms for early detection of breast cancer. This contribution will present a method to
detect and classify the tumor category using backscatter signals obtained from antenna simulation
in CST microwave studio software. The post-processed scattering parameters are utilized to create
image through MATLAB programming environment. The high intensity in the image represents the
precise position of tumor. The automatic classification of tumor is achieved by YOLOv5 deep learning
model from the created microwave images. A training dataset with fifty image samples are formed
by preprocessing, and then augmentation is applied to create final dataset with 1000 samples. This
approach can identify the location and type of early-stage tumor with size of 5mm.

1. INTRODUCTION

In 2025, breast cancer is anticipated to be the most common disease among women around the
world [1, 2]. Adipose tissue and fibro glands are the two main healthy tissues of importance in the
breast. The fibrous and glandular tissues are together referred to as “fibro glandular tissues.” Adipose
and fibro glands tissue proportions in the breast vary with age, general nutrition status, and hormonal
changes brought on by menstruation or pregnancy. Breast tumors typically develop in the milk ducts
connecting to the nipple or in the glandular tissue of the breast. Breast cancer is characterized by
abnormal breast cell proliferation. The dielectric contrast between cancerous tumors and adipose breast
tissue makes this technology particularly promising for the study of breast cancer. The substantial
disparity in electrical characteristics (relative permittivity and conductivity) between malignant and
normal tissues at microwave frequencies is the significant driver behind microwave imaging efficiency in
tumor diagnostics. The discrepancy in dielectric constant values between different tissue types is due to
the water content of each. High-water-content tissues (malignant tumors) have higher relative dielectric
permittivity and conductivity, whereas fat, which is predominant in normal breast tissue, has a lower
permittivity.

The gold standard procedure for breast abnormality detection is digital mammography. The breast
is exposed to ionising x-rays during a mammogram, and the difference in X-ray attenuation of various
tissues is used to visualize breast tissues [3]. Ionizing radiation exposure is a permanent health risk.
Ultrasound is another technique for breast cancer screening. While ultrasound has a strong specificity
for detecting the presence of cancerous lesions, accuracy depends on the operator and may have a
higher percentage of false-positive results than mammography [4, 5]. So, an alternative technique
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is required for early detection and continuous monitoring of the disease progression. For a clinical
diagnosis of breast cancer, it is vital to distinguish between benign and malignant tumors. When a
benign lump is misdiagnosed, unnecessary invasive procedures (such as a biopsy) may be performed.
Breast microwave sensing systems work by exposing breast tissues with low power microwaves that
typically operates between 900MHz and 10GHz with the help of an antenna. The printed microstrip
antennas are extensively utilized in many noninvasive applications. Microstrip antennas with different
types of patch structures and various shapes of ground plane are introduced to improve the bandwidth
and reflection coefficient [6]. Here, parasitic patches in the form of cross shapes are placed in the
substrate to improve the antenna characteristics. Breast tissues produce a scattered field because of
their interactions with incident fields, and the image reconstruction from scattering parameters is done in
MATLAB 2020 using time domain algorithms with dimension 640×640 pixels [7]. One of the intelligent
classifications is based on fuzzy rules with self-configuring evolutionary genetic algorithm. The design
of fuzzy classifier and its implementation process is complex and needs deep analysis of fuzzy set theory.
A novel implementation fuzzy classifier is done by automated self-configuring fuzzy classifier. Fuzzy set
theory and machine learning algorithms together proposed an approach to forecast the possibility of
heart disease in an intelligent way [8]. Some researchers have suggested a deep learning-based approach
for automatic tumor detection in recent years as deep learning has gained popularity [9]. However,
the deep learning-based techniques for detecting breast cancer are essentially restricted to using image
segmentation to find region of interest (ROI) regions or categorise a given ROI region as benign or
malignant. They are unable to simultaneously find ROI regions and classify tumors, which leads to
inefficient diagnosis. On the other hand, convolutional neural network (CNN) architectures with target
detection-based algorithms are employed to classify electromagnetic images, and the generated images
look noisy because of unavailability of large dataset. In this paper, we try to classify breast tumor and
to find its location using YOLOv5 algorithm. The simulation model creates fifty sample images, and
image augmentation process artificially generates the final dataset with thousand images by rotation,
scaling, cropping, zooming, shifting, etc. YOLOv5 model is implemented in python using TensorFlow
API. Six hundred images from the final dataset are utilized for training the YOLOv5 model, and two
hundred images are taken for validation purpose. The remaining two hundred of generated images are
made available for testing purposes.

2. METHODS

2.1. Design and Modelling of Microwave Wideband Antenna

CST Microwave Studio is an antenna modelling and simulation tool for various applications. In this
paper, a CST microwave studio 2020 is used to build a microstrip patch antenna (96.45mm×82.98mm)
with a cross parasitic patch to perform wideband microwave imaging of breast tissue. The difference
in dielectric properties of normal and tumor tissues is identified by radar-based microwave imaging
setup. The parameters required to model the physical dimensions of the proposed antenna (substrate’s
height and width) are designed according microstrip antenna design equations from (1) to (6). The
simulated antenna exhibits good gain at resonance frequency of 3.57GHz. Figure 1 and Figure 2 depict
the antenna’s physical composition. FR-4 substrate material with a 1.6mm width is utilised for antenna
modelling. The substrate’s relative permittivity is chosen to be 4.3, with parasitic cross-shaped elements
for microwave applications. The antenna reflection coefficient characteristic curve is shown in Figure 3.
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Figure 1. Proposed antenna structure front
view.

Figure 2. The antenna structure back view.

Figure 3. Reflection coefficient characteristics of proposed antenna.
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Actual length = L = Leff−2∆L (5)

Length of the ground = Lg = 2 ∗ L (6)

Width of the ground = Wg = 2 ∗W

2.2. Dielectric Characteristics of Breast Tissue

Dielectric characteristics describe how electromagnetic waves interact at the cellular and molecular levels
with biological tissues. An EM field predominantly affects parts of the materials found in biological
tissues. These substances possess an electric net charge and/or an electric dipole moment. most
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significant polar molecules serve as the tissue’s primary source of electric dipole moments. Muscles, fat,
and other body parts are some more sources. Since a tissue’s electrical characteristics are influenced
by a wide range of factors, as shown by various dielectric dispersions, these characteristics show large
variances. The randomly oriented molecules in biological tissues will align in the direction of the applied
electric field upon excitation. The molecules inside the tissues polarise because of this alignment caused
by the external electric field. The molecules’ polarisation produces an electric field that is opposite to
the applied field’s direction but larger in amplitude. This polarisation process takes place gradually over
a period called as the relaxation time. The dielectric properties of different breast tissues are expressed
in Table 1.

Table 1. Dielectric properties of breast tissue.

Sl. No. Layer description
Dielectric

constant

Electrical

Conductivity

(S/M) (σ)

Thickness in

Diameter (mm)

1 Skin tissue 38 2.34 36

2 Fat tissue 4.8 0.26 32

3
Malignant

Tumour tissue
67 49 8

4
Benign Tumour

tissue
59 34 5

2.3. Simulation of Breast Phantom

The goal of the current study is to create an ultra-wideband (UWB) antenna and breast phantom
model to diagnose breast cancer. The skin layer, breast tissue, and malignant or benign tumor tissue all
make up the human breast. A simulation model is developed in CST microwave studio 2020 to mimic
equivalent dielectric properties of breast tissue as shown in Figure 4. Two types of phantom models are

(a) (b)

Figure 4. Rectangular and Hemispherical breast phantom. (a) Rectangular breast phantom,
(b) hemispherical breast phantom.
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Figure 5. Simulation environment with antenna.

developed with rectangular and hemispherical shapes [10, 11]. The UWB antenna is directed to radiate
low power microwave energy towards breast model, and the reflected signals are analysed to derive
dielectric property distribution. Figure 5 denotes the arrangement of antenna and breast phantom
in simulation environment. Different biological tissues with differences in water contents have unique
electrical characteristics. This simulation setup makes it simple to distinguish between healthy tissue
and cancerous tissue by revealing the presence of the tumor and its various stages of resolution. The
antenna or sensing element is rotated around the breast phantom to measure reflection coefficient at
different positions.

The interaction of electromagnetic waves with breast tissue is analysed by complex permittivity ε,
and it represents the capability of material (tissue) to store energy. Equation (7) represents the complex
permittivity of a human tissue and varies according to the frequency.

ε = ε0
(
ε′r−jε′′r

)
(7)

where ε′r and ε′′r show the real and imaginary parts of complex permittivity, and ε0 = 8.854 × 10−12.
The relation between conductivity and complex permittivity is given by Equation (8)

ε′′r =
σ

ω
(8)

where σ represents the conductivity, and ω indicates the angular velocity in radians.

3. RESULTS AND DISCUSSIONS

The result of the proposed technique to locate and image of the breast phantom is discussed in this
section.

3.1. Image Formation by Delay and Sum Algorithm

It is a confocal imaging algorithm that involves a beamforming technique to remove strong artifacts
and noise. Delay and sum (DAS) is a time-domain approach for calculating the propagation model of
an antenna. Signal to clutter ratio is a metric like the signal to noise ratio in signal processing. But it
fails to differentiate the against artifacts and noise as represented in Figure 6. Microwave imaging in
space-time is the most used algorithm to improve the signal to clutter ratio.

The simple delay and sum Equation (9) are given below.

I (r⃗) =

[
M∑
i=1

bİ (τi (r⃗))

]2

(9)

where M — total number of channels, bi — backscattered signal recorded at Channel i.
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Figure 6. Reconstructed image in delay and sum algorithm.

3.2. Image Formation by Improved Delay and Sum Algorithm

An additional weighting factor is introduced at each focal point. The weighting factor is called Q factor,
and it is introduced in the equation shown below. Figure 7 represents the reconstructed image.

I (r⃗) = QF (r⃗) ·

[
M∑
i=1

bİ (τi (r⃗))

]2

(10)

Figure 7. Reconstructed image in improved delay and sum algorithm.

3.3. Image Formation by Delay Multiply and Sum Algorithm

The delay multiply and sum (DMAS) beamformer multiplies the signals in pair after time alignment,
and it provides a better signal to clutter ratio. The microwave image acquired using DMAS with tumor
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Figure 8. Reconstructed image in delay multiply and sum algorithm.

is shown in Figure 8. The highest yellow colour pixel value in the centre of the image shows the sharp
image of the tumor. The bright yellow intensity at the centre of the image is due to the highest reflection
from the breast. The remaining blue colour and low yellow colour intensity show the lowest scattering
region from the breast.

Image clutter is a detection quality metric that is defined as the strongest tumor response
to the strongest clutter energy in the breast tissue. Signal-to-clutter ratio (SCR) is given by
20 log10(Smax /Cmax), where Smax is the maximum response in the known tumor region, and C
max is the maximum response in the clutter region of the image as represented by Table 2.

Table 2. Quality metrics of image reconstruction.

Tumour size

Signal-to-clutter ratio (SCR)

Delay and Sum

Algorithm (dB)

Improved Delay and

Sum Algorithm (dB)

Delay Multiply and

Sum Algorithm (dB)

5mm 1.54 3 2

10mm 1 4 2

One of the most cutting-edge real-time object identification algorithms was created by Joseph
Redmon et al. [14] and is called YOLO (You only look once). The overall detection approach, dataset
justification, image preprocessing, augmentation strategies, YOLOv5 architecture with classification
analysis, and detection mechanism are covered in this section [12, 13]. Figure 9 illustrates the full
approach of the classification and detection flowchart. The simulated microwave breast imaging pictures
were used in this work. The YOLOv5 models are trained using the processed images and their
accompanying tagging of tumor objects in YOLO format. The input image is divided into a grid of cells.
Each cell in YOLO v5’s deep convolutional neural network (DCNN) directly predicts a bounding box
(BB) and object classification. The architecture of YOLOv5 model is illustrated in Figure 10. There
are three subsections namely backbone, neck, and prediction. Input images are preprocessed, labelled,
and annotated to classify them into different categories. The dataset contains 1000 images including 50
image samples and augmented images. Initially, 75% of images present in the dataset are utilized for
training, and remaining 20% are utilized for validation and testing. It is apparent that for the YOLOv5
model to be trained effectively to detect and categorize the target tumor with locations in the microwave
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Figure 9. Process flow diagram of classification model.

Figure 10. Architecture of YOLOV5 model.

head images, a substantial dataset is needed. Tumor detection using YOLOv5 model is illustrated in
Figure 11.

Image labelling and annotations are done by computer vision technique, and the classification
performance is evaluated by the metrics like Precision (P ), Recall (R), and F1 score (Fs) shown by the
following Equations (11), (12), and (13). Table 3 shows various metrics associated with classification
procedure.

P =
NTP

(NTP +NFP )
(11)

R =
NTP

(NTP +NFN )
(12)

Fs =
(2XNTP )

(2×NTP +NFN +NFp)
(13)
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Figure 11. Output image after classification.

Table 3. Classification performance parameters.

No. of

Training

image

Precision

(P ) (%)

Recall

(R) (%)

F1 score

(%)

Train

Classification

Loss

Validation

Classification

Loss

500 81.7 86 86.9 0.00665 0.0225

700 82.6 87.8 88 0.00623 0.0192

1000 84.8 88.4 89 0.00620 0.0189

where NTP = Number of True Positive, NFP = Number of True Negative, NFp = Number of False
Positive, NFN = Number of False Negative.

4. CONCLUSION

Microwave imaging is an efficient technique to differentiate healthy and malignant tissue in the breast.
Antenna plays a major role to identify tumors in the breast in the early stage. Hence, a high-performance
Ultra-Wideband Dielectric Resonator Antenna (DRA-UWB) is used to identify the tumor in the breast.
An antenna is sketched in different locations of the breast phantom. Because of the hemispherical
structure, a mean value of the reflected signal is high at the centre compared to that at the edge.
Hence, the difference in mean value is calculated with and without breast phantom for identifying the
tumor location. The overall efficiency of this technique can be improved by using high-performance
UWB antenna. The image of the breast is reformed by the DMAS beamforming algorithm. This study
suggests using the YOLOV5 algorithm to concurrently identify ROI zones and categorise benign and
malignant tumors.
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