Vol. 128
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-12-30
Antenna Reconfiguration Based DOA Estimation for AWGN Channel in MIMO Applications
By
Progress In Electromagnetics Research C, Vol. 128, 73-84, 2023
Abstract
This paper proposes an underdetermined direction of arrival (DOA) estimation for multiple input and multiple output (MIMO) sparse additive white Gaussian noise (AWGN) channels. Accurate DOA estimation helps in better signal analysis and noise cancellation in the channel. A novel multiplicative multi-kernel basis vector-based non-negative sparse Bayesian learning (NNSBL) algorithm is implemented over a predefined grid. Simultaneously stochastic cuckoo search algorithm (CSA) is exploited virtually to improve the DOA approximation for a non-uniform linear array (NULA) geometry by an optimized antenna reconfiguration model. The simulated and experimental results show that the proposed algorithm yields an optimized root mean square error (RMSE) for different optimized wavelengths of the randomly generated signals. The RMSE convergence graphs demonstrate the effectiveness of the new method for different signal-to-noise (SNR) values.
Citation
Narayanaswamy Anughna, and Muniyappa Ramesha, "Antenna Reconfiguration Based DOA Estimation for AWGN Channel in MIMO Applications," Progress In Electromagnetics Research C, Vol. 128, 73-84, 2023.
doi:10.2528/PIERC22110404
References

1. Vikas, B. and D. Vakula, "Performance comparision of MUSIC and ESPRIT algorithms in presence of coherent signals for DoA estimation," 2017 International Conference of Electronics, Communication, and Aerospace Technology (ICECA), 403-405, 2017.
doi:10.1109/ICECA.2017.8212844

2. Shi, W., C. He, J. Huan, and Q. Zhang, "Fast MUSIC algorithm for joint DOD-DOA estimation based on Gibbs sampling in MIMO array," 2016 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), 1-4, 2016.

3. Krim, H. and M. Viberg, "Two decades of array signal processing research: The parametric approach," IEEE Signal Processing Magazine, Vol. 13, No. 4, 67-94, July 1996.
doi:10.1109/79.526899

4. Lan, X., W. Liu, and H. Y. T. Ngan, "Joint 4-D DOA and polarization estimation based on linear tripole arrays," 2017 22nd International Conference on Digital Signal Processing (DSP), 1-5, 2017.

5. Nguyen, A. T., T. Matsubara, and T. Kurokawa, "High-performance DOA estimation for coprime arrays with an unknown number of sources," 2017 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), 369-371, IEEE, June 2017.
doi:10.1109/APEMC.2017.7975505

6. Molaei, A. M., P. del Hougne, V. Fusco, and O. Yurduseven, "Efficient joint estimation of DOA, range and reflectivity in near-field by using mixed-order statistics and a symmetric MIMO array," EEE Transactions on Vehicular Technology, Vol. 71, No. 3, 2824-2842, March 2022.
doi:10.1109/TVT.2021.3138251

7. Wang, Q., Z. Zhao, and Z. Chen, "Fast compressive sensing DOA estimation via ADMM solver," 2017 IEEE International Conference on Information and Automation (ICIA), 53-57, 2017.
doi:10.1109/ICInfA.2017.8078882

8. Ma, W.-K., T.-H. Hsieh, and C.-Y. Chi, "DOA estimation of quasi-stationary signals with less sensors than sources and unknown spatial noise covariance: A Khatri-Rao subspace approach," IEEE Transactions on Signal Processing, Vol. 58, No. 4, 2168-2180, April 2010.
doi:10.1109/TSP.2009.2034935

9. Xiaozhi, L., S. Muye, and Y. Yinghua, "An effective DOA estimation method of coherent signals based on reconstruct weighted noise subspace," 2017 29th Chinese Control and Decision Conference (CCDC), 2218-2222, 2017.
doi:10.1109/CCDC.2017.7978883

10. Kim, H., J. Kim, K. H. Lee, and K. S. Kim, "DOA estimation in cyclic prefix OFDM systems in LOS mmWave channel using monopulse ratio," 2018 International Conference on Information and Communication Technology Convergence (ICTC), 342-345, 2018.
doi:10.1109/ICTC.2018.8539399

11. Moffet, A., "Minimum-redundancy linear arrays," IEEE Transactions on Antennas and Propagation, Vol. 16, No. 2, 172-175, March 1968.
doi:10.1109/TAP.1968.1139138

12. Zhang, X., Y. Li, Y. Yuan, T. Jiang, and Y. Yuan, "Low-complexity DOA estimation via OMP and majorization-minimization," 2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP), 8-19, 2018.

13. An, F., H. Nosrati, E. Aboutanios, and A. Hassanien, "Single-snapshot DOA estimation in MIMO radar using fast iterative interpolated beamforming," 2018 52nd Asilomar Conference on Signals, Systems, and Computers, 924-928, 2018.
doi:10.1109/ACSSC.2018.8645098

14. Carabias-Orti, J. J., P. Cabanas-Molero, P. Vera-Candeas, and J. Nikunen, "Multi-source localization using a DOA kernel based spatial covariance model and complex nonnegative matrix factorization," 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM), 440-444, 2018.
doi:10.1109/SAM.2018.8448664

15. Jeong, S.-H., Y.-S. Won, and D. Shin, "Fast DOA estimation method based on MUSIC algorithm combined Newton method for FMCW radar," 2019 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), 1-5, 2019.

16. Groth, M. and L. Kulas, "Accurate PPCC-based DOA estimation using multiple calibration planes for WSN nodes equipped with ESPAR antennas," 2018 15th European Radar Conference (EuRAD), 545-548, 2018.
doi:10.23919/EuRAD.2018.8546585

17. Choi, S., B. Kim, J. Kim, D. Kim, and H. Cho, "Doppler coherent focusing DOA method for efficient radar map generation," 2019 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), 1-4, 2019.

18. Hu, N., B. Sun, J. Wang, J. Dai, and C. Chang, "Source localization for sparse array using non-negative sparse Bayesian learning," Signal Processing, Vol. 127, 37-43, 2016.
doi:10.1016/j.sigpro.2016.02.025

19. Li, W., Y.-P. Li, and W.-H. Yu, "On adaptive beamforming for coherent interference suppression via virtual antenna array," Progress In Electromagnetics Research, Vol. 125, 165-184, 2012.
doi:10.2528/PIER12010802

20. Zhang, X., K. Huo, Y. Liu, and X. Li, "Direction of arrival estimation via joint sparse Bayesian learning for bi-static passive radar," IEEE Access, Vol. 7, 72979-72993, 2019.
doi:10.1109/ACCESS.2019.2919069

21. Yang, B., X. Feng, and T. Guo, "Robust adaptive beamforming based on interference-plus-noise covariance matrix reconstruction method," Progress In Electromagnetics Research M, Vol. 97, 87-96, 2020.

22. Krupa Prasad, K. R. and H. D. Maheshappa, "Hybrid basis vector-based underdetermined beamforming algorithm in optimized antenna reconfiguration," Indonesian Journal of Electrical Engineering and Computer Science, Vol. 24, No. 1, 367-375, 2021.
doi:10.11591/ijeecs.v24.i1.pp367-375

23. Dai, J. and H. C. So, "Real-valued sparse Bayesian learning for DOA estimation with arbitrary linear arrays," IEEE Transactions on Signal Processing, Vol. 69, 4977-4990, 2021.
doi:10.1109/TSP.2021.3106741

24. Liu, Y., Z. Zhang, C. Zhou, C. Yan, and Z. Shi, "Robust variational Bayesian inference for direction-of-arrival estimation with sparse array," IEEE Transactions on Vehicular Technology, Vol. 71, No. 8, 8591-8602, 2022.
doi:10.1109/TVT.2022.3173418

25. Li, Z. and Z. Huang, "Sparse Bayesian learning based DOA estimation and array gain-phase error self-calibration," Progress In Electromagnetics Research M, Vol. 108, 65-77, 2022.
doi:10.2528/PIERM21123001