Vol. 130
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-03-07
CSRR Based Metamaterial Inspired Sensor for Liquid Concentration Detection Using Machine Learning
By
Progress In Electromagnetics Research C, Vol. 130, 255-267, 2023
Abstract
A sensor to accurately predict chemical concentrations has been proposed in this research work. Inspired by Metamaterials, the sensor is composed of Complementary Split-Ring Resonators (CSRRs) and utilizes the Machine Learning technique to accurately predict the concentrations. The sensor is designed to maximize the interaction of the Material Under Test (MUT) with the sensitive regions of the CSRRs. The usage of costly and complex fluidic channels and sample containers is avoided by using filter paper for the liquid MUT placement in between the resonators. The proposed sensor is small (2.3 cm × 2.3 cm), simple, employs a low-cost fabrication technique and offers an alternate sensing mechanism that requires a minimal amount of the MUT. The multiple resonances exhibited by the proposed sensor add to the reliability and accuracy of the sensor.
Citation
Divya Prakash, and Nisha Gupta, "CSRR Based Metamaterial Inspired Sensor for Liquid Concentration Detection Using Machine Learning," Progress In Electromagnetics Research C, Vol. 130, 255-267, 2023.
doi:10.2528/PIERC22110101
References

1. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409

2. Rahimi, M., F. B. Zarrabi, R. Ahmadian, Z. Mansouri, and A. Keshtkar, "Miniaturization of antenna for wireless application with difference metamaterial structures," Progress In Electromagnetics Research, Vol. 145, 19-29, 2014.
doi:10.2528/PIER13120902

3. Sabah, C. and S. Uckun, "Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic fillters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
doi:10.2528/PIER09031306

4. Si, L.-M. and X. Lv, "CPW-fed multi-band omni-directional planar microstrip antenna using composite metamaterial resonators for wireless communications," Progress In Electromagnetics Research, Vol. 83, 133-146, 2008.
doi:10.2528/PIER08050404

5. Smith, D. R., "How to build a superlens," Science, Vol. 308, No. 5721, 502-503, Apr. 22, 2005.
doi:10.1126/science.1110900

6. Amiri, M., M. Abolhasan, N. Shariati, and J. Lipman, "Soil moisture remote sensing using SIW cavity based metamaterial perfect absorber," Scientific Reports, Vol. 11, No. 1, 1-17, 2021.
doi:10.1038/s41598-020-79139-8

7. Omer, A. E., G. Shaker, S. Safavi-Naeini, H. Kokabi, G. Alquie, F. Deshours, and R. M. Shubair, "Low-cost portable microwave sensor for non-invasive monitoring of blood glucose level: Novel design utilizing a four-cell CSRR hexagonal configuration," Scientific Reports, Vol. 10, No. 1, 1-20, 2020.
doi:10.1038/s41598-020-72114-3

8. Vafapour, Z., W. Troy, and A. Rashidi, "Colon cancer detection by designing and analytical evaluation of a water-based THz metamaterial perfect absorber," IEEE Sensors Journal, Vol. 21, No. 17, 19307-19313, Jun. 9, 2021.
doi:10.1109/JSEN.2021.3087953

9. Tiwari, N. K., S. P. Singh, and M. J. Akhtar, "Novel improved sensitivity planar microwave probe for adulteration detection in edible oils," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 2, 164-166, Dec. 28, 2018.
doi:10.1109/LMWC.2018.2886062

10. Tumkaya, M. A., F. Dincer, M. Karaaslan, and C. Sabah, "Sensitive metamaterial sensor for distinction of authentic and inauthentic fuel samples," Journal of Electronic Materials, Vol. 46, No. 8, 4955-4962, Aug. 2017.
doi:10.1007/s11664-017-5485-x

11. Abdulkarim, Y. I., S. Dalgac, F. O. Alkurt, F. F. Muhammadsharif, H. N. Awl, S. R. Saeed, O. Altintas, C. Li, M. Bakir, M. Karaaslan, and M. Ameen, "Utilization of a triple hexagonal Split Ring Resonator (SRR) based metamaterial sensor for the improved detection of fuel adulteration," Journal of Materials Science: Materials in Electronics, Vol. 32, No. 19, 24258-24272, Oct. 2021.
doi:10.1007/s10854-021-06891-6

12. Bakir, M., S. Dalgac, M. Karaaslan, F. Karadag, O. Akgol, E. Unal, T. Depci, and C. Sabah, "A comprehensive study on fuel adulteration sensing by using triple ring resonator type metamaterial," Journal of the Electrochemical Society, Vol. 166, No. 12, B1044, Aug. 2, 2019.
doi:10.1149/2.1491912jes

13. Zhang, Y., J. Zhao, J. Cao, and B. Mao, "Microwave metamaterial absorber for non-destructive sensing applications of grain," Sensors, Vol. 18, No. 6, 1912, 2018.
doi:10.3390/s18061912

14. Benkhaoua, L., M. T. Benhabiles, S. Mouissat, and M. L.Riabi, "Miniaturized quasi-lumped resonator for dielectric characterization of liquid mixtures," IEEE Sensors Journal, Vol. 16, No. 6, 1603-1610, Dec. 1, 2015.
doi:10.1109/JSEN.2015.2504601

15. Chuma, E. L., Y. Iano, G. Fontgalland, and L. L. Roger, "Microwave sensor for liquid dielectric characterization based on metamaterial complementary split ring resonator," IEEE Sensors Journal, Vol. 18, No. 24, 9978-9983, Oct. 1, 2018.
doi:10.1109/JSEN.2018.2872859

16. Zhou, H., D. Hu, C. Yang, C. Chen, J. Ji, M. Chen, Y. Chen, Y. Yang, and X. Mu, "Multi-band sensing for dielectric property of chemicals using metamaterial integrated microfluidic sensor," Scientific Reports, Vol. 8, No. 1, 1-11, 2018.

17. Kim, H. K., D. Lee, and S. Lim, "A fluidically tunable metasurface absorber for flexible large-scale wireless ethanol sensor applications," Sensors, Vol. 16, No. 8, 1246, Aug. 2016.
doi:10.3390/s16081246

18. Yoo, M., H. K. Kim, and S. Lim, "Electromagnetic-based ethanol chemical sensor using metamaterial absorber," Sensors and Actuators B: Chemical, Vol. 222, 173-180, Jan. 1, 2016.

19. Prakash, D. and N. Gupta, "High sensitivity grooved CSRR based sensor for liquid chemical characterization," IEEE Sensors Journal, Aug. 19, 2022.

20. Ekmekci, E., U. Kose, A. Cinar, O. Ertan, and Z. Ekmekci, "The use of metamaterial type double-sided resonator structures in humidity and concentration sensing applications," Sensors and Actuators A: Physical, Vol. 297, 111559, Oct. 1, 2019.

21. Ekmekci, E. and G. Turhan-Sayan, "Multi-functional metamaterial sensor based on a broad-side coupled SRR topology with a multi-layer substrate," Applied Physics A, Vol. 110, No. 1, 189-197, 2013.
doi:10.1007/s00339-012-7113-1

22. Prakash, D. and N. Gupta, "Applications of metamaterial sensors: Review," International Journal of Microwave and Wireless Technologies, 1-15, 2021.

23. Ballard, Z., C. Brown, A. M. Madni, and A. Ozcan, "Machine learning and computation-enabled intelligent sensor design," Nature Machine Intelligence, Vol. 3, No. 7, 556-565, Jul. 2021.
doi:10.1038/s42256-021-00360-9

24. Gocen, C. and M. Palandoken, "Machine learning assisted novel microwave sensor design for dielectric parameter characterization of water-ethanol mixture," IEEE Sensors Journal, Vol. 22, No. 3, 2119-2127, Dec. 15, 2021.
doi:10.1109/JSEN.2021.3136092

25. Patel, S. K., J. Surve, J. Parmar, A. Natesan, and V. Katkar, "Graphene-based metasurface refractive index biosensor for hemoglobin detection: Machine learning assisted optimization," IEEE Transactions on Nano Bioscience, Aug. 26, 2022.

26. Patel, S. K., J. Parmar, and V. Katkar, "Ultra-broadband, wide-angle plus-shape slotted metamaterial solar absorber design with absorption forecasting using machine learning," Scientific Reports, Vol. 12, No. 1, 1-4, Jun. 17, 2022.

27. Prakash, D. and N. Gupta, "Metamaterial inspired soil moisture sensor using machine learning approach for accurate prediction," 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), 642-646, IEEE, Dec. 17, 2021.

28. Riad, M. M. and A. R. Eldamak, "Coplanar waveguide based sensor using paper superstrate for non-invasive sweat monitoring," IEEE Access, Vol. 8, 177757-177766, Sep. 28, 2020.

29. Ebrahimi, A., W. Withayachumnankul, S. Al-Sarawi, and D. Abbott, "High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization," IEEE Sensors Journal, Vol. 14, No. 5, 1345-1351, Dec. 18, 2013.
doi:10.1109/JSEN.2013.2295312

30. Bao, J. Z., M. L. Swicord, and C. C. Davis, "Microwave dielectric characterization of binary mixtures of water, methanol, and ethanol," The Journal of Chemical Physics, Vol. 104, No. 12, 4441-4450, Mar. 22, 1996.
doi:10.1063/1.471197

31. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, and J. Vanderplas, "Scikit-learn: Machine learning in Python," The Journal of Machine Learning Research, Vol. 12, 2825-2830, Nov. 1, 2011.

32. Hastie, T., R. Tibshirani, J. H. Friedman, and J. H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, Aug. 2009.

33. Muller, A. C. and S. Guido, Introduction to Machine Learning with Python: A Guide for Data Scientists, O'Reilly Media, Inc., Sep. 26, 2016.

34. Kazemi, N., M. Abdolrazzaghi, and P. Musilek, "Comparative analysis of machine learning techniques for temperature compensation in microwave sensors," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 9, 4223-4236, May 31, 2021.
doi:10.1109/TMTT.2021.3081119

35. Kazemi, N., N. Gholizadeh, and P. Musilek, "Selective microwave zeroth-order resonator sensor aided by machine learning," Sensors, Vol. 22, No. 14, 5362, Jan. 2022.
doi:10.3390/s22145362

36. Yang, R., Y. Li, J. Zheng, J. Qiu, J. Song, F. Xu, and B. Qin, "A novel method for carbendazim high-sensitivity detection based on the combination of metamaterial sensor and machine learning," Materials, Vol. 15, No. 17, 6093, Jan. 2022.
doi:10.3390/ma15176093

37. Wu, W. J., W. S. Zhao, D. W. Wang, B. Yuan, and G. Wang, "Ultrahigh-sensitivity microwave microfluidic sensors based on modified complementary electric-LC and split-ring resonator structures," IEEE Sensors Journal, Vol. 21, No. 17, 18756-18763, Jun. 17, 2021.
doi:10.1109/JSEN.2021.3090086

38. Badura, M., P. Batog, A. Drzeniecka-Osiadacz, and P. Modzel, "Regression methods in the calibration of low-cost sensors for ambient particulate matter measurements," SN Applied Sciences, Vol. 1, Jun. 2019.

39. Reis, M. S. and P. M. Saraiva, "Integration of data uncertainty in linear regression and process optimization," AIChE Journal, Vol. 51, No. 11, 3007-3019, Nov. 2005.
doi:10.1002/aic.10540

40. Moon, G., J. R. Choi, C. Lee, Y. Oh, K. H. Kim, and D. Kim, "Machine learning-based design of meta-plasmonic biosensors with negative index 0 metamaterials," Biosensors and Bioelectronics, Vol. 164, 112335, Sep. 15, 2020.