1. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409
2. Rahimi, M., F. B. Zarrabi, R. Ahmadian, Z. Mansouri, and A. Keshtkar, "Miniaturization of antenna for wireless application with difference metamaterial structures," Progress In Electromagnetics Research, Vol. 145, 19-29, 2014.
doi:10.2528/PIER13120902
3. Sabah, C. and S. Uckun, "Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic fillters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
doi:10.2528/PIER09031306
4. Si, L.-M. and X. Lv, "CPW-fed multi-band omni-directional planar microstrip antenna using composite metamaterial resonators for wireless communications," Progress In Electromagnetics Research, Vol. 83, 133-146, 2008.
doi:10.2528/PIER08050404
5. Smith, D. R., "How to build a superlens," Science, Vol. 308, No. 5721, 502-503, Apr. 22, 2005.
doi:10.1126/science.1110900
6. Amiri, M., M. Abolhasan, N. Shariati, and J. Lipman, "Soil moisture remote sensing using SIW cavity based metamaterial perfect absorber," Scientific Reports, Vol. 11, No. 1, 1-17, 2021.
doi:10.1038/s41598-020-79139-8
7. Omer, A. E., G. Shaker, S. Safavi-Naeini, H. Kokabi, G. Alquie, F. Deshours, and R. M. Shubair, "Low-cost portable microwave sensor for non-invasive monitoring of blood glucose level: Novel design utilizing a four-cell CSRR hexagonal configuration," Scientific Reports, Vol. 10, No. 1, 1-20, 2020.
doi:10.1038/s41598-020-72114-3
8. Vafapour, Z., W. Troy, and A. Rashidi, "Colon cancer detection by designing and analytical evaluation of a water-based THz metamaterial perfect absorber," IEEE Sensors Journal, Vol. 21, No. 17, 19307-19313, Jun. 9, 2021.
doi:10.1109/JSEN.2021.3087953
9. Tiwari, N. K., S. P. Singh, and M. J. Akhtar, "Novel improved sensitivity planar microwave probe for adulteration detection in edible oils," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 2, 164-166, Dec. 28, 2018.
doi:10.1109/LMWC.2018.2886062
10. Tumkaya, M. A., F. Dincer, M. Karaaslan, and C. Sabah, "Sensitive metamaterial sensor for distinction of authentic and inauthentic fuel samples," Journal of Electronic Materials, Vol. 46, No. 8, 4955-4962, Aug. 2017.
doi:10.1007/s11664-017-5485-x
11. Abdulkarim, Y. I., S. Dalgac, F. O. Alkurt, F. F. Muhammadsharif, H. N. Awl, S. R. Saeed, O. Altintas, C. Li, M. Bakir, M. Karaaslan, and M. Ameen, "Utilization of a triple hexagonal Split Ring Resonator (SRR) based metamaterial sensor for the improved detection of fuel adulteration," Journal of Materials Science: Materials in Electronics, Vol. 32, No. 19, 24258-24272, Oct. 2021.
doi:10.1007/s10854-021-06891-6
12. Bakir, M., S. Dalgac, M. Karaaslan, F. Karadag, O. Akgol, E. Unal, T. Depci, and C. Sabah, "A comprehensive study on fuel adulteration sensing by using triple ring resonator type metamaterial," Journal of the Electrochemical Society, Vol. 166, No. 12, B1044, Aug. 2, 2019.
doi:10.1149/2.1491912jes
13. Zhang, Y., J. Zhao, J. Cao, and B. Mao, "Microwave metamaterial absorber for non-destructive sensing applications of grain," Sensors, Vol. 18, No. 6, 1912, 2018.
doi:10.3390/s18061912
14. Benkhaoua, L., M. T. Benhabiles, S. Mouissat, and M. L.Riabi, "Miniaturized quasi-lumped resonator for dielectric characterization of liquid mixtures," IEEE Sensors Journal, Vol. 16, No. 6, 1603-1610, Dec. 1, 2015.
doi:10.1109/JSEN.2015.2504601
15. Chuma, E. L., Y. Iano, G. Fontgalland, and L. L. Roger, "Microwave sensor for liquid dielectric characterization based on metamaterial complementary split ring resonator," IEEE Sensors Journal, Vol. 18, No. 24, 9978-9983, Oct. 1, 2018.
doi:10.1109/JSEN.2018.2872859
16. Zhou, H., D. Hu, C. Yang, C. Chen, J. Ji, M. Chen, Y. Chen, Y. Yang, and X. Mu, "Multi-band sensing for dielectric property of chemicals using metamaterial integrated microfluidic sensor," Scientific Reports, Vol. 8, No. 1, 1-11, 2018.
17. Kim, H. K., D. Lee, and S. Lim, "A fluidically tunable metasurface absorber for flexible large-scale wireless ethanol sensor applications," Sensors, Vol. 16, No. 8, 1246, Aug. 2016.
doi:10.3390/s16081246
18. Yoo, M., H. K. Kim, and S. Lim, "Electromagnetic-based ethanol chemical sensor using metamaterial absorber," Sensors and Actuators B: Chemical, Vol. 222, 173-180, Jan. 1, 2016.
19. Prakash, D. and N. Gupta, "High sensitivity grooved CSRR based sensor for liquid chemical characterization," IEEE Sensors Journal, Aug. 19, 2022.
20. Ekmekci, E., U. Kose, A. Cinar, O. Ertan, and Z. Ekmekci, "The use of metamaterial type double-sided resonator structures in humidity and concentration sensing applications," Sensors and Actuators A: Physical, Vol. 297, 111559, Oct. 1, 2019.
21. Ekmekci, E. and G. Turhan-Sayan, "Multi-functional metamaterial sensor based on a broad-side coupled SRR topology with a multi-layer substrate," Applied Physics A, Vol. 110, No. 1, 189-197, 2013.
doi:10.1007/s00339-012-7113-1
22. Prakash, D. and N. Gupta, "Applications of metamaterial sensors: Review," International Journal of Microwave and Wireless Technologies, 1-15, 2021.
23. Ballard, Z., C. Brown, A. M. Madni, and A. Ozcan, "Machine learning and computation-enabled intelligent sensor design," Nature Machine Intelligence, Vol. 3, No. 7, 556-565, Jul. 2021.
doi:10.1038/s42256-021-00360-9
24. Gocen, C. and M. Palandoken, "Machine learning assisted novel microwave sensor design for dielectric parameter characterization of water-ethanol mixture," IEEE Sensors Journal, Vol. 22, No. 3, 2119-2127, Dec. 15, 2021.
doi:10.1109/JSEN.2021.3136092
25. Patel, S. K., J. Surve, J. Parmar, A. Natesan, and V. Katkar, "Graphene-based metasurface refractive index biosensor for hemoglobin detection: Machine learning assisted optimization," IEEE Transactions on Nano Bioscience, Aug. 26, 2022.
26. Patel, S. K., J. Parmar, and V. Katkar, "Ultra-broadband, wide-angle plus-shape slotted metamaterial solar absorber design with absorption forecasting using machine learning," Scientific Reports, Vol. 12, No. 1, 1-4, Jun. 17, 2022.
27. Prakash, D. and N. Gupta, "Metamaterial inspired soil moisture sensor using machine learning approach for accurate prediction," 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), 642-646, IEEE, Dec. 17, 2021.
28. Riad, M. M. and A. R. Eldamak, "Coplanar waveguide based sensor using paper superstrate for non-invasive sweat monitoring," IEEE Access, Vol. 8, 177757-177766, Sep. 28, 2020.
29. Ebrahimi, A., W. Withayachumnankul, S. Al-Sarawi, and D. Abbott, "High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization," IEEE Sensors Journal, Vol. 14, No. 5, 1345-1351, Dec. 18, 2013.
doi:10.1109/JSEN.2013.2295312
30. Bao, J. Z., M. L. Swicord, and C. C. Davis, "Microwave dielectric characterization of binary mixtures of water, methanol, and ethanol," The Journal of Chemical Physics, Vol. 104, No. 12, 4441-4450, Mar. 22, 1996.
doi:10.1063/1.471197
31. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, and J. Vanderplas, "Scikit-learn: Machine learning in Python," The Journal of Machine Learning Research, Vol. 12, 2825-2830, Nov. 1, 2011.
32. Hastie, T., R. Tibshirani, J. H. Friedman, and J. H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, Aug. 2009.
33. Muller, A. C. and S. Guido, Introduction to Machine Learning with Python: A Guide for Data Scientists, O'Reilly Media, Inc., Sep. 26, 2016.
34. Kazemi, N., M. Abdolrazzaghi, and P. Musilek, "Comparative analysis of machine learning techniques for temperature compensation in microwave sensors," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 9, 4223-4236, May 31, 2021.
doi:10.1109/TMTT.2021.3081119
35. Kazemi, N., N. Gholizadeh, and P. Musilek, "Selective microwave zeroth-order resonator sensor aided by machine learning," Sensors, Vol. 22, No. 14, 5362, Jan. 2022.
doi:10.3390/s22145362
36. Yang, R., Y. Li, J. Zheng, J. Qiu, J. Song, F. Xu, and B. Qin, "A novel method for carbendazim high-sensitivity detection based on the combination of metamaterial sensor and machine learning," Materials, Vol. 15, No. 17, 6093, Jan. 2022.
doi:10.3390/ma15176093
37. Wu, W. J., W. S. Zhao, D. W. Wang, B. Yuan, and G. Wang, "Ultrahigh-sensitivity microwave microfluidic sensors based on modified complementary electric-LC and split-ring resonator structures," IEEE Sensors Journal, Vol. 21, No. 17, 18756-18763, Jun. 17, 2021.
doi:10.1109/JSEN.2021.3090086
38. Badura, M., P. Batog, A. Drzeniecka-Osiadacz, and P. Modzel, "Regression methods in the calibration of low-cost sensors for ambient particulate matter measurements," SN Applied Sciences, Vol. 1, Jun. 2019.
39. Reis, M. S. and P. M. Saraiva, "Integration of data uncertainty in linear regression and process optimization," AIChE Journal, Vol. 51, No. 11, 3007-3019, Nov. 2005.
doi:10.1002/aic.10540
40. Moon, G., J. R. Choi, C. Lee, Y. Oh, K. H. Kim, and D. Kim, "Machine learning-based design of meta-plasmonic biosensors with negative index 0 metamaterials," Biosensors and Bioelectronics, Vol. 164, 112335, Sep. 15, 2020.