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CSRR Based Metamaterial Inspired Sensor for Liquid Concentration
Detection Using Machine Learning
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Abstract—A sensor to accurately predict chemical concentrations has been proposed in this research
work. Inspired by Metamaterials, the sensor is composed of Complementary Split-Ring Resonators
(CSRRs) and utilizes the Machine Learning technique to accurately predict the concentrations. The
sensor is designed to maximize the interaction of the Material Under Test (MUT) with the sensitive
regions of the CSRRs. The usage of costly and complex fluidic channels and sample containers is avoided
by using filter paper for the liquid MUT placement in between the resonators. The proposed sensor
is small (2.3 cm × 2.3 cm), simple, employs a low-cost fabrication technique, and offers an alternate
sensing mechanism that requires a minimal amount of the MUT. The multiple resonances exhibited by
the proposed sensor add to the reliability and accuracy of the sensor.

1. INTRODUCTION

Metamaterials offer some unique attributes such as negative permittivity and permeability, backward
wave propagation, negative refractive index, and these attributes are exploited in the design of perfect
absorbers, filters, superlenses, cloaking devices, miniaturization, and performance enhancement in
antennas [1–5]. The attractive features of the metamaterial-based sensors are their small size, low
cost, ability to give instantaneous results, minimal sample requirement of the material under test
(MUT), integrability with external electronic circuitry, etc. In the last few years, metamaterial-based
sensors are designed for diverse applications in manufacturing, agriculture, health, food, and chemical
industries. Examples of such applications are soil moisture sensor [6], blood glucose level sensor [7],
early detection of cancerous tissues [8], adulteration detection in materials [9–12], detecting the quality
of food grains [13], sensing concentration of liquids and characterization of materials based on their
dielectric properties [14–19], etc.

In this work, we propose a sensor for the determination of liquid chemical concentration. Although
several works have been carried out in the past to detect chemical concentrations, our proposed work
is unique in the sense that the sensor structure is very simple facilitating easy placement of the liquid
MUT in the proximity of the sensor. The placement of the liquid MUT around resonators to maximize
sensitivity has been a design challenge that often requires fluidic channels and chambers to be separately
designed and manufactured. This adds to the cost and complexity of the sensor. Broadside coupled
Complementary Split Ring Resonators (BC-CSRRs) are used in the design to maximize the interaction of
the MUT with the resonators for achieving high sensitivity [20–22]. The work also unitizes the Machine
Learning (ML) concept to accurately predict the chemical concentrations from data obtained from the
sensor. The proposed sensor is small, simple in design, and employs easy fabrication procedures using
the low-cost photolithography technique. The sensing process is easy, offers instantaneous results, and
requires a minimal amount of the sample to be tested. This sensing technique with some modifications
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can also be used to test adulteration and the authenticity of liquid substances other than determining
their concentrations. The shift in the resonant frequencies and changes in the magnitude of the reflection
coefficient are the sensing parameters that are utilized to predict the chemical concentrations.

ML is now being increasingly utilized in applications accomplished through metamaterials. It is
used to enhance targeted functionality, geometry optimizations, and forecasting performances [23–27].
A perspective on the ML-enabled computational sensors is presented in [23], and a new generation of
compact and low-cost sensors with improved sensing capabilities is envisioned. In [24], a microwave
sensor is proposed where a predictive model using ML is developed for the characterization of the
Ethanol-Water mixture. Here, the ML model predicts the dielectric property of the mixture through
the sensor’s stopband centre frequency, using linear regression. In [25], a biosensor that utilizes ML
for the sensor’s behaviour prediction is proposed. Polynomial regression is used here to enhance the
sensitivity using the most suitable sensor geometry. In [26], a metamaterial solar absorber is proposed,
where ML is used to forecast absorption by examining the design data, considering the thickness of the
metasurface and substrate, and angles of incidence. Our proposed work’s novelty lies in the simple design
with a cost-effective MUT placement mechanism along with the developed ML model that considers
the multiband response of the sensor.

2. SENSING PRINCIPLE

Split ring resonators (SRRs) are commonly used in the design of metamaterial structures for various
applications, and in our work, we have used a pair of complementary split-ring resonators (CSRRs).
The placement of the MUT is done between the resonators. The resonating frequency of the resonator
is decided by its geometry, the dielectric property of the substrate used, and the dielectric property of
the material surrounding the resonator in proximity. Once fabricated, the dimensions of the structure
cannot be changed. Hence, to bring about a shift in the resonating frequency, which is also the sensing
parameter, the dielectric property of the material surrounding the resonator or the material itself must
change. By changing the MUT itself, placed between the resonators, the resonant frequency of the design
changes, giving an indication about the material. The general equation for the resonating frequency is
given by Equation (1),

fr =
1

2π
√
LuCu

(1)

where Cu and Lu are the capacitance and inductance in the CSRR’s equivalent tank circuit, without
the MUT. The capacitance is developed from the split or gaps in the resonator rings, and as a result
of the current flowing in the metal portion of the resonator, the inductance in the equation is created.
The resonance frequency of the resonators with the MUT is given by Equation (2),

frL =
1

2π
√

Lu(Cu + CL)
(2)

where CL arises as a result of the placement of the MUT in the proximity of the resonators, which
changes the effective permittivity of the medium and hence the capacitance, which in turn changes the
resonant frequency. The idea is to place the MUTs in regions of high electric field densities to maximize
the sensitivity. There is a high concentration of electric fields in the etched rings of the CSRRs; therefore,
the placement of the MUT around the etched rings would lead to high sensitivity of the sensor. The
sensitivity and selectivity are the important attributes that decide the sensor performance. Multiband
sensing is also a desirable attribute in sensor design, as it adds to the reliability and accuracy of the
sensor [16, 19].

3. SENSOR DESIGN

The sensor comprises two CSRRs that are broadside coupled and face each other, as shown in Fig. 1.
The split width in both the resonators is 1.2mm. The dimension of the substrate on which the circular
ring is etched is 23mm× 23mm. Rogers RO3003 is the substrate used, whose dielectric constant value
is 3; the value of loss tangent is 0.001; and the substrate’s height is 1.52mm. The inner and outer radii
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Figure 1. (a) Structure of the resonators placed within the sample holder with a plane wave incidence.
(b) Fabricated resonator with dimensions. (c) Orientation of the resonators etched on the ground plane,
as placed within the waveguide.

Figure 2. The sensor placed in the foam holder along with the boundary conditions applied in the
simulation.

of the etched ring in both the resonators are 10.5mm and 9.6mm, respectively. P1 to P2 is the distance
between the resonators. The simulations are carried out in the CST Microwave Studio software. As the
sensor is intended to be tested in a waveguide, the perfect electric conductor boundary conditions are
applied around the x- and y-axes, and the excitation signal travels along the z-axis, as shown in Fig. 2.
Both the magnetic and electric fields lie on the resonator’s plane. On one side of both the resonators,
a circular ring is etched, and on the other side, the metal layer is completely removed through etching.
The MUT is placed between the two resonators. At the resonant frequency, there is a high concentration
of electric fields in the etched rings of the resonators, thus the placement of the MUT around the rings
yields high sensitivity. The MUT is placed in the waveguide through a holder made of foam having
a dielectric constant approximately that of the air. The dimensions of the resonators are small, and
they are lightweight. Moreover, the amount of MUT required for sensing is miniscule. Therefore, the
choice of foam as a sample holder is appropriate, and it would easily provide the mechanical strength
needed to hold the resonators and the MUT. The intended waveguide to be used is that of C band, and
the resonators along with the sample holder and the MUT easily fit into the waveguide’s opening. As
sensing is done in terms of the resonant frequency shifts, the geometry of the resonators (that decide
the resonant frequency) is chosen so that they fit in the waveguide. Operating frequencies lying in the
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C-Band gives optimum size of the resonators, i.e., the CSRR ring area is large enough for its sufficient
interaction with the MUT to bring about greater shifts in the resonant frequency. Meanwhile, the
resonators are also comparatively small to be fabricated and handled easily, having low cost.

For the liquid MUTs, filter paper is used in the design. The filter paper with added Liquid Under
Test (LUT) on it [20] is placed on the foam layer between the resonators. The foam layers are added
to keep a distance between the resonators and to provide a platform for the filter paper wetted by the
LUT.

As discussed in [28], several methods have been adopted in research works for the placement of
the LUTs around the resonators. In some works, containers are used to hold the LUTs. Although
containers allow large sample volumes, their thick walls waste the sensitive metasurface, limiting the
sensitivity of the sensor. Capillary tubes and microfluidic channels are also used for the placement of
LUTs. The contact ability of the capillary tubes with a flat resonator surface is limited owing to its
cylindrical shape. The design of microfluidic channels requires additional fabrication cost and setup.
These techniques also require external mechanical systems to fill and empty the channels, like pumps
and syringes. Filter paper wetted with the LUT is a low-cost and simple technique for the placement
of samples in proximity to the resonators. The filter paper is very thin, and it can be easily exposed
to the full sensing area where the fields are concentrated, with homogenous distribution of the LUT.
Pipettes are used to drop the liquid samples over the filter paper easily, ignoring the use of any external
mechanical supply system.

4. APPLICATIONS

4.1. Ethanol Concentration Sensing

After finalizing the application, the next step in the design process involves the simulation of the
proposed sensor with the MUTs. Since it is intended to build a concentration sensor, for the simulation
purpose it is required to know the dielectric properties of the Water-Ethanol solution at various
concentrations. After preparing samples of different concentrations, using the dielectric probe kit,
the dielectric constants of various concentrations of ethanol in water are measured. The dielectric
constant of the Ethanol/Methanol-water solution at different concentrations is measured over a broad
frequency range (1–12GHz) and plotted in Fig. 3. The plot clearly shows the slope of the curve, i.e.,
the variation of the dielectric constant vs frequency. At the resonant frequencies, the slope of the curve
gives an estimation of the changes in the dielectric constant values, which are eventually put in the
simulation software. The values of the dielectric constants, Fig. 3, obtained from the probe kit are
like those mentioned in [29, 30]. The values of the real part of the complex permittivity and the loss
tangent obtained from the probe kit are fed into the simulation software (CST Microwave Studio) to
obtain the reflection coefficients at different ethanol concentrations. The dielectric properties of the

Figure 3. Plot of dielectric constant of Ethanol
concentrations in the 1–12GHz frequency range.

Figure 4. Experiment and simulation data
comparison for dry filter paper as the MUT.
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filter paper are also measured, which is found like those mentioned in [28]. First, a dry filter paper is
placed between the resonators, and the reflection coefficients at different frequencies are obtained. Fig. 4
shows the comparison between the reflection coefficients obtained through the software simulation and
the experiment. In the experiment, the dry filter paper is just placed between the resonators and the
foam material as done in the simulations.

Both simulation and experimental data show three resonances between 5GHz and 10GHz. Out of
the three resonant notches, two lower frequency notches are in proximity. The reflection coefficients for
10%, 20%, 30%, 40%, 50%, and 60% Ethanol concentration in water are plotted in Fig. 5.

Figure 5. Reflection coefficient vs frequency plot for Ethanol as MUT at various concentrations.

There is a shift in the first two resonant frequencies as the concentration is increased from 10% to
60%, while the amplitude of the reflection coefficient decreases with the increase in the concentration at
the third resonance. The linear shift in the first two resonances and the linear change in notch depth at
the third resonance can uniquely identify the concentration of ethanol. In the experiment, three drops
of the solution are dropped using a pipette at the centre of the filter paper which is placed between
the resonators and the foam material. The whole setup, consisting of the resonators and the wetted
filter paper on the foam holder, placed within a waveguide adaptor, is shown in Fig. 6. The setup

Figure 6. The wetting of the filter paper with the
MUT and the placement of the resonators along
with the MUT in a waveguide adaptor through a
foam sample holder.

Figure 7. Reflection coefficient curves for
30% Ethanol concentration as obtained from the
simulation and experiment.
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is then excited by the Vector Network Analyzer (VNA) to get the reflection coefficients for varying
concentrations. Fig. 7 illustrates the comparison of the reflection coefficient curves as obtained through
the experiments and simulations, for 30% Ethanol concentration. The two curves are similar, each
having three notches in the mentioned frequency band.

The difference in the frequencies of the notches and notch depths occur due to fabrication
inaccuracy, inaccurate foam holder dimensions, inhomogeneous distribution of the liquid MUT over
the filter paper, imprecise separation of the resonators through the foam material, calibration errors,
and probe losses. Since the sensing parameter is the resonance frequency shifts and the changes in the
notch depths, the differences in the notch frequencies as obtained through the simulation and experiment
do not affect the sensor performance or the sensitivity, also discussed in [11].

4.2. Methanol Concentration Sensing

Figure 8 shows the dielectric constants of various concentrations of methanol-water solution in the
frequency range of 1GHz to 12GHz, as obtained from the dielectric probe kit.

Figure 8. Plot of dielectric constant of Methanol concentrations in the 1–12GHz frequency range.

Like the ethanol concentration sensing, in the experiment, three drops of methanol-water solution
are dropped on the centre of the dry filter paper placed between the resonators and the foam material.
This process is carried out for the 10%, 20%, 30%, 40%, 50%, and 60% Methanol water concentration.
For each concentration, the resonant frequencies and notch depths were captured. Fig. 9 depicts the
plot of the reflection coefficient vs frequency, obtained through simulation of the sensor with the data
of dielectric properties of methanol-water solution. It is observed that the resonant frequency of the
first notch shifts more than the second notch, and the amplitude of the third notch decreases with the
concentration increments, with the notch frequency being almost the same.

Figure 10 depicts the contrast between the reflection coefficient curves as obtained through the
experiment and simulation, for 30% Methanol concentration.

With accurate fabrication using precision instruments, the differences between the measured and
simulated results could be eliminated. The foam holder’s accurate shape and size are critical as
inaccuracy would lead to a tilted orientation of the sensor within the waveguide adaptor. Moreover,
any slight change in the separation between the resonators would lead to deviation from the simulated
results. Care must be taken to ensure that the unvarying amount of MUT is dropped on the filter paper
at the same location for every measurement. The VNA must be properly calibrated before taking any
measurements. The measured results for the dry filter paper, concentration of Methanol, and Ethanol as
the MUT show similar reflection coefficient responses to the simulation, with all three notches present
around the same frequencies. Eliminating the mentioned sources of errors would lead to a perfect
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Figure 9. Reflection coefficient vs frequency plot for Methanol as MUT at various concentrations.

Figure 10. Reflection coefficient curves for 30% Methanol concentration as obtained from the
simulation and experiment.

match between the experimental and simulated results. As mentioned, only the dielectric properties of
ethanol/methanol solution are measured in the 1–12GHz frequency range using a dielectric probe kit
and VNA. Further, as shown in the simulation results, the sensor depicts resonance characteristics at
three frequencies between 5GHz and 10GHz (one of which goes beyond 8GHz); therefore, to verify it
experimentally, a C-band through X-band waveguide to the co-axial adapter is used as shown in Fig. 6,
whose passband goes up to 11GHz.

5. PREDICTIVE MODEL GENERATION USING MACHINE LEARNING

Figure 11 shows the variation of the first and second resonant frequencies (RF1, RF2) and notch depth
(ND3, at the third resonant frequency) for distinct concentrations of Ethanol and Methanol in water.
It is apparent from the plot that as the concentrations of Ethanol and Methanol increase, the resonant
frequencies (RF1, RF2) increase, and the notch depth (ND3) also increases. The independent variables,
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Figure 11. Plot showing the change of independent variables (ND3, RF2, RF1) with the variation of
Ethanol and Methanol concentrations. RF1 and RF2 are in GHz, and the changes ND3 is measured in
dB.

i.e., RF1, RF2, ND3, are unique for a particular concentration of either Ethanol or Methanol and thus
could be used to build a model to predict the chemical concentration (dependent variable).

The data of these independent variables for each concentration of Ethanol and Methanol are
tabulated, and using the Linear Regression function in Python programming language an equation
to predict the concentration of each chemical in water is developed. The correlation values of Ethanol
concentration to the RF1, RF2, and ND3 are found to be 0.995, 0.98, and −0.965, respectively. Similarly,
the correlation values of Methanol concentration to the RF1, RF2, and ND3 are found to be 0.992161,
0.940256, and −0.955574, respectively. From Fig. 11 and the correlation values, it is apparent that
the Ethanol and Methanol concentrations are linearly correlated to the independent variables. The
tabulated data of Ethanol and Methanol concentrations and the corresponding independent variables
are split into training and test data by using the ‘Scikit-learn’ library of the Python programming
language and calling the ‘train test split’ function [31–33]. The training data are fitted to the Linear
Regression function to obtain the regression coefficient and the y-axis intercept or the regression constant
value. For the independent variables RF1, RF2, and ND3 (ethanol-water solution) the coefficients of
regression are found to be 208.173615, −5.766147, and −0.024454, respectively. The y-axis intercept or
the regression constant value is −1074.5. Similarly, for the Methanol solution, the regression coefficient
values for RF1, RF2, and ND3 are −17.689832, −18.500106, and −4.477106, respectively. The intercept
value is 191.156. The general equation for the concentration takes the form of (3),

C = k1 · RF1 + k2 · RF2 + k3 ·ND3 + Y (3)

where C is the concentration in percentage; k1, k2, k3 are the coefficients of regression; and Y is the
regression constant. Just by finding the independent variable values, through the excitation of the
sensor with the MUT, the concentration can be known easily through the equation. The highest
accuracy obtained from the model and the simulated data is found to be 94.55% for Ethanol water
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solution and 94.85% for Methanol water solution. Thus, the predictive models for both Ethanol and
Methanol solutions offer high accuracy.

In an application like ours, [24] proposes a microwave sensor, assisted by ML, for dielectric
characterization of the Ethanol-Water mixture. A predictive model using ML is developed employing
Linear Regression. As compared to our work, where the multi-band response is used to build the
predictive model, [24] uses a single transmission notch frequency to build the model. Moreover, in
comparison to our simple MUT placement mechanism using filter paper, it uses a 3D-printed liquid
container placed in an empty region in the main sensing unit, which adds to the cost and complexity
of the sensor design. In [25], a Graphene refractive index sensor based on a metasurface with increased
sensitivity, assisted by Machine ML, for the detection of haemoglobin is proposed. To predict the
absorption values for different sensor design parameters, an ML algorithm has been proposed. The
absorption response of the sensor changes for different haemoglobin concentrations. Here, Polynomial
Regression models are used to predict the best geometrical parameters to achieve high sensitivity.
Selecting the algorithm that is best suited to build an accurate predictive model could be done with
some prior knowledge of the sensor data as done in [34], where investigation of different concentrations
of acetone/methanol mixtures in water is carried out, with added temperature compensation. As in
our work, the independent variables are linearly correlated to the dependent variable, i.e., the unknown
concentration, and the choice of using Linear Regression is easy. In [35], a CRLH-TL-based sensor having
multiband resonance is proposed that uses ML to enhance the sensitivity to a specific MUT rather than
the effective medium. The MUTs used here are different concentrations of Methanol, Ethanol in water.
The multiband response is achieved through different lengths of the stub inductors. Unlike our simple
MUT placement mechanism, a fluidic channel that runs over the interdigital capacitor (IDC) section is
used to place the MUT. To enhance the sensitivity of detection, [36] uses unsupervised ML to analyze
the transmission spectrum. Here, to detect the carbendazim concentrations, a metamaterial structure
composed of a cut wire and two SRRs (CWSRRs) was used. In [37], to find the complex permittivity
of the Water-Ethanol solution, a modified complementary electric-LC resonator (M-CELC) is proposed
that consists of a central meandering slot and an etched pair of CSRRs for greater confinement of
electric fields, thereby increasing sensitivity. Here the liquid MUT is injected through a syringe into a
microfluidic channel made on a polydimethylsiloxane (PDMS) substrate placed above the meandering
slot. Although this work achieves high sensitivity in comparison to our sensor design, it has a complex
structure, and the microfluidic channel adds to sensor size and cost. Moreover, our proposed design
does not require any fluid injection system using syringes. Conventionally, curve fitting functions are
used to represent the sensor’s response, but with the increase in the number of independent variables,
the fitting function becomes complex and requires added computational power to build.

An accurate estimation of the output can also be made when the training data are taken from
the measured values of the sensor. In this work, the regression model is developed from the simulation
results, as they are valid and defensible, derived from globally accepted common rules and conditions.
Although the simulation provides strict guidelines for the implementation of a design, the actual
environment of operation of the device may differ. As a result, the measured values may contain
noises and uncertainties arising from interference from the ambient environment (cross sensitivity [38]),
fabrication anomalies, and material inconsistencies (purity of ethanol and methanol in this case).
Thus, the measured values contain not only the information about the material being tested but also
some information about the ambient environment and noises, and this information may be leveraged
for precise calibration of the sensor. In [39], it is discussed how measurement uncertainty is used
for estimating precise models for systems that have large experimental variations operating in noisy
environments. While building a regression model from the measured values, care should be taken in
choosing the independent variables. Although multi-variable regression can provide a better fitting
model, choosing the independent variables that are highly correlated to each other or are redundant
may lead to an overfitting model. As discussed in [38], a need may arise for recalibration in the final
measuring environment, and in such instances, ML algorithms that optimize the regression models,
minimizing the error between the predicted and actual values, may prove to be very convenient and
time-saving. Table 1 elaborates on some of the metamaterial, sensor applications assisted by ML. In
recent research works, the ML approach mainly employs Classification or Regression algorithms, or the
combination of both, for targeted parameter enhancements and geometry optimizations.
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Table 1. ML assisted metamaterial, sensor applications specifying ML approach, sensor topology, and
sensing parameter.

Ref.

No.
Application Sensor Topology ML Approach

Single/Multiband

Sensing/Sensing

Parameter

[35]
Characterization of

Liquid Mixtures.

Zeroth-Order

Resonator. Composite

right-/left-handed

transmission

line (CRLH-TL).

Classification using

Convolutional Neural

Network (CNN).

Multiband. Shift

in Resonance

Frequency.

[25]

Haemoglobin

Detection

Biosensor.

Graphene-based

metasurface.

Polynomial Regression for finding

suitable geometrical parameter

for sensitivity enhancement.

Change in

Absorption of

the metasurface.

[24]

Dielectric

Characterization of

Water-Ethanol

mixture.

Transmission line

with intercoupled

spiral resonators.

Linear Regression

Single. Shift

in transmission

notch frequency.

[36]

Carbendazim

Detection.

Benzimidazole

fungicide Detection.

Pair of Split-Ring

Resonators and

Cut Wire.

Mean Shift. Unsupervised

Machine Learning.

Multiband. Shift

in Resonance

Frequency.

[34]

Investigation

of different

concentrations of

Acetone/methanol

mixtures in water

with temperature

compensation.

Split Ring Resonator

with narrowed lower

side, excited by a

transmission line.

Classification followed by

regression on the sensor’s

transmission profile data

at different temperatures.

High classification accuracy

achieved through MLP,

SVM, DT, LDA, KNN,

and Random Forest.

Single. Shift

in resonance

frequency.

[40]
Plasmonic Biosensor

for DNA detection.

Double Negative

Metamaterial,

thin film five

layered structure.

MLP, AE, t-SNE, k-means

clustering for enhanced sensor

plasmonic structures and elevated

detection sensitivity through

geometry optimizations.

Single. Resonance

shifts in

reflectance curve.

This

Work

Sensing

Concentration of

Ethanol/Methanol

in water.

A pair of

CSRRs excited

in a waveguide.

Linear Regression.

Multiband. Shift

in Resonance

Frequency.

Abbreviations: MLP: multilayer perceptron, SVM:support vector machine, DT: decision tree, LDA: linear discriminant
analysis, KNN: K-nearest neighbors, AE: auto encoder, t-SNE: t-Stochastic Neighbor Embedding

6. CONCLUSION

Metamaterial-based sensors offer an alternate sensing mechanism through the manipulation of
electromagnetic waves. They are advantageous in the sense that they are small, low cost, employ
an easy fabrication process using existing fabrication techniques, require a minimal amount of the
material to be tested, and are even easy to integrate with external electronic circuitry. In this work,
a metamaterial inspired sensor composed of a pair of CSRRs is proposed to detect chemical fluids.
The sensor design is simple, and the placement of the liquid MUTs is accomplished with ease without
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requiring any additional fluidic channels and containers, thereby reducing the cost and complexity of the
sensor structure. A model is developed using machine learning, that predicts the chemical concentrations
with high accuracy. The model’s accuracy for sensing the concentration of Ethanol-Water solution was
found to be 94.55%, and the accuracy for Methanol-Water solution was 94.85%. The sensor can also
be used to sense the adulteration of liquid fuels and to check the authenticity of liquid substances with
slight modifications in the sensor design and the machine learning algorithms. The proposed sensor has
the potential to find applications in health monitoring, automobile, food, and chemical industries, to
name a few.
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