Vol. 128
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-01-10
A Systematic Study of Low SLL Two-Way Pattern in Shared Aperture Radar Arrays
By
Progress In Electromagnetics Research C, Vol. 128, 169-182, 2023
Abstract
A systematic study of a low SLL (sidelobe level) two-way pattern in shared aperture arrays is presented. Three or two-weight excitations are used for the elements of the transmit and receive arrays depending on the requirements. The receive array has a smaller number of elements by not receiving from some of the edge elements of the transmit array. The condition of appearance of certain minor lobes of the transmit array pattern at certain nulls of the receive one helps to find the ratio between the number of elements of the receive and transmit arrays. In the case of more than one possible ratio, the optimum ratio is the one that gives the lowest SLL. In the three-weight array the total number of the transmit elements is equal to the that of the two higher excitations plus the number of elements of the highest one. In the two-weight excitation the higher weight elements of the transmit array are chosen to be approximately one half of the total elements. The excitations of both arrays are found by equating the level of the higher two unequal sidelobes of the two-way array factor. The three-weight array design is presented for the first time while the two-weight case gives lower peak SLL than those of the literature. Our work contains the important steps of the design and the main aspects of the implementation. The resulting peak SLL of the two-way array pattern reaches up to less than -51.2 dB and less than -56.5 dB, for the two- and three-weight cases, correspondingly.
Citation
Theodoros Samaras, and John Sahalos, "A Systematic Study of Low SLL Two-Way Pattern in Shared Aperture Radar Arrays," Progress In Electromagnetics Research C, Vol. 128, 169-182, 2023.
doi:10.2528/PIERC22102003
References

1. Imbriale, W. A, Spaceborne Antennas for Planetary Exploration, California, USA, Jet Propulsion Lab., California Institute of Technology, 2006.
doi:10.1002/0470052783

2. Raemer, H. R., Radar Systems Principles, Boca Raton, FL, CRC Press, 1996.

3. Fenn, A. J., Adaptive Antennas and Phased Arrays for Radar and Communications, Boston, USA, Artech House, 2007.

4. Wirth, W.-D., Radar Techniques Using Antenna Arrays, 2nd Edition, London, U.K., IET, 2013.
doi:10.1049/PBRA026E

5. Haupt, R. L., "Thinned arrays using genetic algorithms," IEEE Trans. Antennas Propag., Vol. AP-42, No. 7, 993-999, Jul. 1994.
doi:10.1109/8.299602

6. Trampuz, C., M. Simeoni, I. E. Lager, and L. P. Ligthart, "Complementarity based design of antenna systems for FMCW radar," Proc. 5th European Radar Conference, 216-219, Amsterdam, 2008.

7. Lager, E., C. Trampuz, M. Simeoni, and L. P. Ligthart, "Interleaved array antennas for FMCW radar applications," IEEE Trans. Antennas Propag., Vol. 57, No. 8, 2486-2490, Aug. 2009.
doi:10.1109/TAP.2009.2024573

8. Rocca, P. and M. Donelli, "Low sidelobe ADS-based arrays for FMCW radar," Proc. IEEE Antennas Propag. Soc. Int. Symp. URSI Nat. Radio Sci., 2004-2007, Roznik, Slovenia, 2011.

9. Ferre, N., P. F. Combes, and T. Dusseux, "Transmit-receive optimized patterns for space radar active antennas," Proc. IEEE Antennas Propag. Soc. Int. Symp. URSI Nat. Radio Sci. Meeting, 1240-1243, Seattle, WA, USA, Vol. 2, Jun. 1994.

10. Haupt, R. L., "Optimizing the sidelobe level of a two-way antenna array pattern by thinning the receive aperture," International Conference of Radar 2018, Brisbane, Australia, Aug. 2018.

11. Haupt, R. L., "Lowering the sidelobe level of a two-way array factor with uniform transmit and receive arrays," IEEE Trans. Antennas Propag., Vol. 67, No. 6, 4253-4256, Jun. 2019.
doi:10.1109/TAP.2019.2905932

12. Haupt, R. L. and P. Nayeri, "Uniform arrays with low sidelobe two-way antenna patterns," Proc. EuCAP, 9-13, London, U.K., Apr. 2018.

13. Sahalos, J. N., "Design of shared aperture radar arrays with minimum sidelobe level of the two-way array factor," IEEE Trans. Antennas Propag., Vol. 68, 5415-5420, 2020.
doi:10.1109/TAP.2020.2981735

14. Sahalos, J. N., "Lowering the sidelobe level of a two-way pattern in shared aperture radar arrays," International Journal of Antennas & Propagation, Vol. 10, 2021.

15. Rajender, R., K. R. Subhashini, and B. P. Kumar, "Two-way array factor supported by thinning strategy for an improved radar performance," National Conference on Communications (NCC), Kanpur, India, DOI: 10.1109/NCC52529.2021.9530057, Jul. 27-30, 2021.

16. Fenn, A. J., "Theoretical and experimental study of monopole phased array antennas," IEEE Trans. Antennas Propag., Vol. 34, No. 10, 1118-1126, 1985.
doi:10.1109/TAP.1985.1143499

17. Mailloux, R. J., Phased Array Handbook, 3rd Ed., Artech House, Dedham, Mass., 2017.

18. Sneha, H. L., H. Singh, and R. M. Jha, "Mutual coupling effects for radar cross section (RCS) of a series-fed dipole antenna array," Hindawi Publishing Corporation, International Journal of Antennas and Propagation, Vol. 2012, Article ID 601532, 20 pages, doi:10.1155/2012/601532.

19. Balanis, C. A., Antenna Theory Analysis and Design, 4th Ed., John Wiley & Sons Inc., New Jersey, USA, 2016.

20. Sahalos, J. N., Orthogonal Methods for Array Synthesis: Theory and the ORAMA Computer Tool, John Wiley & Sons Inc., New Jersey, USA, 2006.
doi:10.1002/0470028548