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A Systematic Study of Low SLL Two-Way Pattern in Shared
Aperture Radar Arrays

Theodoros Samaras1, * and John N. Sahalos1, 2

Abstract—A systematic study of a low SLL (sidelobe level) two-way pattern in shared aperture arrays
is presented. Three or two-weight excitations are used for the elements of the transmit and receive arrays
depending on the requirements. The receive array has a smaller number of elements by not receiving
from some of the edge elements of the transmit array. The condition of appearance of certain minor
lobes of the transmit array pattern at certain nulls of the receive one helps to find the ratio between the
number of elements of the receiving and transmit arrays. In the case of more than one possible ratio,
the optimum ratio is the one that gives the lowest SLL. In the three-weight array the total number of
the transmit elements is equal to the that of the two higher excitations plus the number of elements
of the highest one. In the two-weight excitation, the higher weight elements of the transmit array are
chosen to be approximately one half of the total elements. The excitations of both arrays are found by
equating the level of the higher two unequal sidelobes of the two-way array factor. The three-weight
array design is presented for the first time while the two-weight case gives lower peak SLL than those
of the literature. Our work contains the important steps of the design and the main aspects of the
implementation. The resulting peak SLL of the two-way array pattern reaches up to less than −51.2 dB
and less than −56.5 dB for the two- and three-weight cases correspondingly.

1. INTRODUCTION

Antennas with a narrow main beam and low sidelobes make up the main parts of radar systems. Design
techniques of several radar antenna arrays can be found in the literature. In [1], spaceborne antennas
for planetary exploration were presented. Radar systems principles with interesting details of antennas
were given in [2]. Fenn [3] presented an interesting analysis of adaptive antennas and phased arrays for
radar and communication systems. A comprehensive introduction of radar technology with examples of
modern systems based on active array antennas are given in [4]. Transmit and receive phased arrays at
the same aperture [5–9] turned out to be an excellent structure for radars. Such a structure has great
performance with reduced bulkiness and low manufacturing costs. Haupt [10–12] proposed the design
of a radar system by using the constraint that certain nulls of the receive pattern are in the directions
of the peak of certain sidelobes of the transmit one. The idea has been proven extremely useful and
successful. In [13], Haupt’s idea was extended and improved by using the condition of equating the
levels of the two higher minor lobes of the two-way radiation pattern. Moreover, in [13, 14] the use of
two-weight excitation for the elements of the transmit and receive arrays reduced the SLL to less than
−50 dB.

In [14], several examples were presented for the ratios Nr
Nt

and M
Nt

for the two-weight arrays. Nt,

Nr, and M are the number of transmit, receive, and higher weight elements of the arrays. In [15], a
parametric optimization has been applied to arrays with a three-weight amplitude excitation, and the
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SLL achieved became less than −57 dB. It is noticed that arrays with combined even and odd number
of elements cannot be implemented [15]. Expressions (2) and (3) of [15] can be used only if both arrays
contain either even or odd number of elements.

In [16–18] and the references therein [17], one can find several studies dealing with radar arrays
including element mutual coupling [16, 18], element patterns [16], etc. The above give radars with low
SLL that helps to reject interference and ground clutter. In most of the usual approaches, an amplitude
taper to the transmit and/or receive array is applied. Amplitude tapers need expensive feed networks.
Thus, to avoid bulkiness and cost we can use arrays with a smaller number of weight element excitation.
This is important because, compared to arrays with amplitude taper, this approach results in similar
(slightly worse) performance but requires a simpler practical implementation.

In the current work, we present a three-weight array design for the first time. Also, compared with
previous works, it improves and optimizes the two-weight array case. For all arrays, it presents the most
important rules for choosing the even or odd number of elements in combination with the calculation
of the optimum level of the excitation. The conditions of appearance of minor lobes of the transmit
array at the direction of nulls of the receive one give the ratio Nr

Nt
. In the resulting two-way pattern, the

condition is imposed that the two mostly unequal highest sidelobes become equal. This condition gives
the optimum level of the weight excitation. The reduction of the SLL for the two-weight arrays becomes
better than that of [13] and [14] with SLL up to less than −51.2 dB. For the three-weight array, the SLL
was found to be less than −56.5 dB. Radar systems with such peak SLL improve their anti-jamming
performance by reducing background noise and interference.

2. THREE-WEIGHT AMPLITUDE EXCITATION

Let us consider a transmit and a receive linear array of discrete elements with three-weight excitation.
The elements are along the z-axis with equal inter-element distance d (Fig. 1).

We set W1 = 1 +W , W2 = 2, W3 = 3, and we have the transmit and receive array factors AFt (θ)
and AFr (θ) as follows [19]:

AF t (θ) =
e−j

Nt−1
2

kd cos θ

(1 +W )Nt + (1−W )M + L

{
(1 +W ) sin

(
Nt
2
kd cos θ

)
+ (1−W ) sin

(
M
2
kd cos θ

)
+ sin

(
L
2
kd cos θ

)
sin

(
1
2
kd cos θ

) }

AF r (θ) =
e−j Nr−1

2
kd cos θ

(1 +W )Nr + (1−W )M + L

{
(1 +W ) sin

(
Nr
2
kd cos θ

)
+ (1−W ) sin

(
M
2
kd cos θ

)
+ sin

(
L
2
kd cos θ

)
sin

(
1
2
kd cos θ

) } (1)

The number of elements with weights W1 is Nt−M , i.e., Nt−M
2 from each side of the array. The number

of elements with weight higher than W1 is M , and the number of elements with W3 = 3 is L. To simplify
the procedure, we assume at first that W = 0 and Nt = M +L with M > L. The transmit and receive
array factors become

AFt (θ) = 2
e−j

Nt−1
2

kd cos θ

Nt

{
sin
(
Nt
4 kd cos θ

)
cos
(
M
4 kd cos θ

)
cos
(
L
4 kd cos θ

)
sin
(
1
2kd cos θ

) }
(2)

AFr (θ) =
e−jNr−1

2
kd cos θ

Nr +Nt

{
sin
(
Nr
2 kd cos θ

)
+ 2 sin

(
Nt
4 kd cos θ

)
cos
(
M−L

4 kd cos θ
)

sin
(
1
2kd cos θ

) }
(3)

We assume that d = λ
2 , and from (2) we can see that the positions of nulls of AF t are at the angles

θti = cos−1

(
4i

Nt

)
, i = 1, 2, 3, . . .

θtl = cos−1

[
2(2l − 1)

M

]
, l = 1, 2, 3, . . .

θtm = cos−1

[
2(2m− 1)

L

]
, m = 1, 2, 3, . . .

(4)

We look at several combinations of Nt, L, M where two of the above three conditions give the same
angle.
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Figure 1. Three-weight radar transmit and receive linear arrays.

We start from the first two conditions of (4) and have

M

Nt
=

2l − 1

2i
>

1

2

M =
5

8
Nt, i = 4, l = 3 ⇒ L =

3

8
Nt

M =
7

12
Nt, i = 6, l = 4 ⇒ L =

5

12
Nt

(5)

From the first and third conditions of (4) it is

L

Nt
=
2m− 1

2i
<

1

2

L =
3

8
Nt, i = 4, m = 2 ⇒ M =

5

8
Nt

L =
5

12
Nt, i = 6, m = 3 ⇒ M =

7

12
Nt

(6)

Finally, from the second and third conditions of (4) we get

L

M
=

2m− 1

2l − 1
⇒ L

Nt
=

2m− 1

2m+ 2l − 2
<

1

2

L =
3

8
Nt, l = 3, m = 2 ⇒ M =

5

8
Nt

L =
5

12
Nt, l = 4, m = 3 ⇒ M =

7

12
Nt

(7)

Expressions (5)–(7) show that all the conditions of (4) are true at the same time for certain relations
among Nt, L,M . It is noticed that the above relations are not unique. For example, we can have
L = 1

4Nt,
7
16Nt, . . . with M = 3

4Nt,
9
16Nt, . . ., respectively. Without excluding other cases, the ones

that will be presented here give some interesting results. We assume that the peak of sidelobes is
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approximately in the middle between ascending nulls [13, 14]. In Tables A1 and A2 of the Appendix
we give the position of nulls and sidelobes of the transmit pattern for L = 3

8Nt and L = 5
12Nt. We

start the numerical procedure by zeroing (3) for cos θ = 20
3Nt

which is the position of the 3rd sidelobe

of the transmit array for L = 3
8Nt. It is found that Nr

Nt
∼ 0.856. Alternatively, for cos θ = 44

5Nt
which

is the position of the 4th sidelobe we get Nr
Nt

∼ 0.788. Also, for the 5th sidelobe we have cos θ = 54
5Nt

and Nr
Nt

∼ 0.8. For an array with Nt = 80, M = 50, L = 30, and W = 0, we compare the SLL of the
two-way array patterns for Nr = 0.856 × 80 ∼ 68, Nr = 0.788 × 80 ∼ 64, and Nr = 0.8 × 80 = 64.
The receive array with Nr = 68 gives the lowest SLL < −54.7 dB of the two-way array pattern. This
is shown in Fig. 2. For a transmit array with Nt = 128, M = 80, and L = 48, we compare the SLL
for Nr = 0.856 × 128 ∼ 110, Nr = 0.788 × 128 ∼ 100, and Nr = 0.8 × 128 ∼ 102. The two-way
array factor for Nr = 100 has the lowest SLL < −54.8 dB and is given in Fig. 3. For Nr = 110, it is
SLL < −54.1 dB, and for Nr = 102 it is SLL < −54 dB.

Figure 2. A two-way array factor for Nt = 80,
M = 50, L = 30 and Nr = 68. For W = 0, SLL
becomes < −54.7 dB.

Figure 3. A two-way array factor for Nt = 128,
M = 80, L = 48 and Nr = 100. For W = 0, SLL
becomes < −54.8 dB.

For the condition that L = 5
12Nt, zeroing (3) for cos θ = 64

7Nt
which is the position of the 4th sidelobe,

we have Nr
Nt

∼ 0.825. Alternatively, for cos θ = 20
Nt

which is the position of the 5th sidelobe, we have
Nr
Nt

= 0.8, while for the 6th sidelobe, cos θ = 102
7Nt

and Nr
Nt

∼ 0.796. Using an array with Nt = 120, M = 70,
L = 50, and W = 0, we compare the SLL of the two-way array patterns for Nr = 0.825× 120 ∼ 100 or
98, Nr = 0.8×120 ∼ 96, and Nr = 0.796×120 ∼ 96. The lowest resulting SLL which is < −54.3 dB was
found for Nr = 98. Fig. 4 shows the corresponding two-way factor. For Nr = 96, it is SLL < −53.1 dB,
and for Nr = 100, it is SLL < −52 dB.

For arrays with an odd number of elements, the design can take place by subtracting (or adding)

Figure 4. A two-way array factor for Nt = 120, M = 70, L = 50 and Nr = 98. For W = 0, SLL
becomes < −54.3 dB.
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one element from (to) the corresponding even arrays. Thus, we have

Nto = Nte − 1, M = Odd

{
5

8
Nte

}
and L = Odd

{
3

8
Nte

}
or

Nto = Nte − 1, M = Odd

{
7

12
Nte

}
and L = Odd

{
5

12
Nte

}
The nulls of the transmit array for W = 0 cannot be derived analytically. We suppose that the cos θ
of nulls have a small difference from the ones of even number of elements. Thus, using Equations (4)
we can write them by adding to the numerator small quantities |xi|, |xl|, |xm| ≪ 1. The angles of nulls
can then be written as:

θti = cos−1

(
4i+ xi
Nt

)
, i = 1, 2, 3, . . .

θtl = cos−1

[
2 (2l − 1) + xl

M

]
, l = 1, 2, 3 . . .

θtm = cos−1

[
2 (2m− 1) + xm

L

]
, m = 1, 2, 3 . . .

xi = ai, xl = al, xm = am for L =
3

8
Nte

xi = bi, xl = bl, xm = bm for L =
5

12
Nte

(8)

The positions of nulls are given in Table A3 of the Appendix.
The transmit array factor is written as

AFt (θ) =
e−j

Nte−2
2

kd cos θ

Nte − 1 +M + L

{
sin
(
Nte−1

2 kd cos θ
)
+ sin

(
M
2 kd cos θ

)
+ sin

(
L
2 kd cos θ

)
sin
(
1
2kd cos θ

) }
(9)

By zeroing the numerator of (9), we can find approximately the values ai and bi. For the first five nulls
of the transmit array, ai and bi are given in Table A4 of the Appendix. We keep in mind that the
position of the sidelobes is approximately in the middle between ascending nulls. Thus, for example,
cos θ of the 3rd sidelobe of the transmit array is at

cos θ3 =
1

2

(
16 + a3
3Nte

+
8 + a4
Nte

)
=

1

3Nte

(
20 +

170

Nte

)
(10)

If the above sidelobe is at a null of the receive array factor, then by zeroing (3) and using (10) for W = 0
we get

sin

[
Nro

Nte

π

3

(
10 +

86

9Nte

)]
+ sin

[
5

24
π

(
10 +

86

9Nte

)]
++sin

[
π

8

(
10 +

86

9Nte

)]
= 0 (11)

The ratio Nro
Nte

can be found for a given Nte. Let us have a transmit array with
(

M
Nte

, L
Nte

)
=
(
5
8 ,

3
8

)
. For

Nte = 40 we have that Nto = 40 − 1 = 39, M = Odd[(5/8)40] = 25, L = Odd[(3/8)40] = 15. Solving
(11) we find that Nro

Nte
∼ 0.844 which gives Nro = 33. Fig. 5 shows the two-way array factor which has

an SLL < −54.6 dB.

For the case
(

M
Nte

, L
Nte

)
=
(

7
12 ,

5
12

)
, we take the cos θ for the 4th sidelobe of a transmit array. It is

cos θ4 =
1

2

(
8 + b4
Nte

+
72 + b5
7Nte

)
=

1

7Nte

(
64 +

7

3Nte
+

54 cos
(
π
7

)
7Nte

[
1 + cos

(
π
7

)]) (12)

If the sidelobe of the transmit array is at a null of the receive array factor, then by following the previous
procedure we can find the ratio Nro

Nte
.



174 Samaras and Sahalos

Figure 5. The two-way array factor for Nt = 39,
M = 25, L = 15 and Nr = 33. For W = 0, SLL
becomes < −54.6 dB.

Figure 6. A two-way array factor for Nt = 177,
M = 105, L = 73, Nr = 147, SLL becomes
< −54.7 dB.

Let us take a transmit array with Nt0 = 178 − 1 = 177, M = Integ · (7/12)178 = (103 or 105),
L = Integ · (5/12)178 = (73 or 75). For Nte = 178, it is found that Nro

Nte
∼ 0.828 which gives Nro = 147.

From all the combinations ofM and L, the valuesM = 105 and L = 73 give the lowest SLL < −54.7 dB.
The two-way array factor for this case is shown in Fig. 6.

From a set of numerical results, it was found that the ratio Nro
Nte

has a small difference from the

corresponding one Nre
Nte

. Thus, to simplify the procedure we can suppose that Nro
Nte

is approximately the
same as the corresponding one for even array.

To improve SLL, the only one choice is to have W ̸= 0. In the examples of Figs. 5 and 6 we see that
the two higher sidelobes have almost the same level. Thus, equating the level of each one of them to
the one of the next higher sidelobe, we expect to find W that gives a lower SLL. In Fig. 5 equating the
sidelobes at 84.6◦ and 69.25◦, we found that W = 0.15. With this amplitude the two-way array factor
shows an improved SLL which from −54.6 dB becomes less than −56.0 dB. This is given in Fig. 7.

Figure 7. The two-way array factor for Nt = 39,
M = 25, L = 15 and Nr = 33. For W1 = 1+W =
1.15, SLL becomes < −56.0 dB.

Figure 8. The two-way array factor forNt = 117,
M = 75, L = 45 and Nr = 99. For 1 +W = 1.15,
SLL becomes < −56.5 dB.

An array with Nt = 118 − 1 = 117 can have L = (73 or 75), L = (43 or 45), and Nr = 99. For
W = 0, the min SLL < −55.4 dB was found for M = 75 and L = 45. Using W = 0.15, the SLL is
improved and has a value < −56.5 dB. This is given in Fig. 8.

The performance analysis of three-weight amplitude excitation shows two-way array factors with
SLL less than −56.5 dB.

The three-weight case for W = 0 gave two-way patterns which were improved for W = 0.15. This
happens for both even and odd numbers of elements. Apart from the two examples given above, this
value of W = 01.5 was found to provide the best result for many other cases tested. In the examples of
the case of the two-weight arrays, the values of W are < 0 and differ by an average of ∼ 14%. In this
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case, the relation between the numbers of elements has a greater effect. A general rule for all cases is
to equate the two sidelobes of higher levels for W = 0 and find the best value of W .

It is noticed that the amplitude excitation was assumed to be W1 = 1 +W , W2 = 2, W3 = 3. If
W2 and W3 were changed, the results would be affected under many conditions. Our proposed solution
is simple, and we believe that it offers relatively useful and satisfactory results.

3. REDUCTION OF THE NUMBER OF WEIGHTS

Now we assume that in a three-weight array we have L = 0. Using the condition Nt = M + L, we
have that Nt = M . In this case, the arrays from three-weight become uniform, and the ratio Nr

Nt
was

analytically given in the past [11–13].
For L = 0 without the condition Nt = M , the linear arrays will have two-weight excitation. These

are shown in Fig. 9. Our goal is not to repeat [13] and [14]. Our effort is to extend them and somehow
to optimize the two-weight arrays.

Figure 9. Two-weight radar transmit and receive linear arrays.

To have an analytical solution for the position of nulls and sidelobes of the transmit array, we
suppose that M = Nt

2 . If we set Z = 1−W
1+W , the array factors given in (1) become

AFt (θ) =
e−j

Nt−1
2

kd cos θ

Nt

(
1 + Z

2

) {
sin
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4 kd cos θ
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The directions of nulls of the transmit array are found by zeroing the numerator of AF t in (13). We
set cos−1

(
Z
2

)
= y and get
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(
Nt

4
kd cos θ

)[
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(
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4
kd cos θ

)
+ cos y

]
= 0 (14)

For d = λ
2 , the nulls are at the angles

θti = cos−1

(
4i

Nt

)
, i = 1, 2, 3, . . .

θtl = cos−1

[
4 (2l − 1)

Nt
± 4

Ntπ
y

]
, l = 1, 2, 3 . . .

(15)
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Positions of the first nulls and sidelobes are given in Table A5 of the Appendix. We choose to have
nulls of the pattern of the receive array at the positions θ1 and θ3 of the 1st and 3rd sidelobes of the
transmit pattern. Thus, by using (13) for the AFr (θ) we get

sin

(
Nr

2
π cos θ1

)
+ Z sin

(
Nt

4
π cos θ1

)
= 0

sin

(
Nr

2
π cos θ3

)
+ Z sin

(
Nt

4
π cos θ3

)
= 0

(16)

cos θ1 =
4
Nt

− 2
Ntπ

y and cos θ3 =
6
Nt

+ 2
Ntπ

y are found from the ascending nulls of AFt (θ). Equation (16)
can be written as

sin

[
Nr

Nt
(2π − y)

]
+ 2 cos y cos

y

2
= 0

sin

[
Nr

Nt
(3π + y)

]
− 2 cos y cos

y

2
= 0

(17)

It is
1

2
<

Nr

Nt
< 1 (18)

Adding the two equations of (17) we get

sin

[
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Nt
(2π − y)

]
+ sin

[
Nr

Nt
(3π + y)

]
= 0 (19)

Thus

2 sin

[
Nr

Nt

(
5π

2

)]
cos

[
Nr

Nt

(π
2
+ y
)]

= 0 (20)

From (20) we get [
Nr

Nt

(
5π

2

)]
= kπ → k = 2,

Nr

Nt
= 0.8 (21)

[
Nr

Nt

(π
2
+ y
)]

=
2l − 1

2
π, l = 1, 2, . . . (22)

Using any equation of (17) we have from (21) and (22) the following expressions

2 cos y cos
y

2
− sin

[
0.8×

(π
2
+ y
)]

= 0 (23)

2 cos y cos
y

2
− (−1)l cos

[
Nr

Nt

(
5π

2

)]
= 0 (24)

Solution of (23) gives

y =
π

3
→ W = 0 (25)

In (24) the ratio Nr
Nt

is a fraction of two integers. Thus, we can have one of the following ratios

Nr

Nt
=

Nt − 2

Nt
,
Nt − 4

Nt
,
Nt − 6

Nt
, . . . ,

Nt −
(
Nt
2 − 2

)
Nt

(26)

We modify (24) to the following cubic equation

4
(
cos

y

2

)3
− 2

(
cos

y

2

)
− (−1)l cos

[
Nr

Nt

(
5π

2

)]
= 0 (27)

By taking an example for a transmit array with Nt = 40 and M = 20 we can solve the cubic equation
and have the values for Z = 2 cos y (Table 1).
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Table 1. Z versus the ratio of Nr
Nt

.

Nr

Nt

38

40
,
26

40
,
22

40

36

40
,
28

40

34

40
,
30

40

32

40
Z 0.485 0.857 1.057 1.13

Testing all the possible values of Nr
Nt

we can find the one with the lowest SLL of the two-way array

factor. This gives for the first time the optimum ratio of Nr
Nt

which in our case is Nr
Nt

= 32
40 = 0.8. It is

important to say that for Z = 1 the two-way array factor has an SLL < −49.6 dB while for Z = 1.13 it
has an improved SLL < −50.46 dB. For either Z = 1 or Z = 1.13, the two-way array factor has unequal
sidelobe levels. Thus, to improve SLL, we apply the same method as for the three-weight arrays. We
keep the ratio Nr

Nt
constant and equate the level of the two higher sidelobes. The array factor for either

Z = 1 or Z = 1.13 has the above sidelobes approximately at the same angles. These sidelobes are shown
in Table 2. Thus, it is proposed next, for practical reasons, to use the case of Z = 1.

Table 2. Positions of the two higher sidelobes.

Angle θ1 θ2
Degrees 83◦.5 69◦

SLL for Z = 1.0 −49.6 dB −51.0 dB

SLL for Z = 1.35 −51.7 dB −50.46 dB

AF (θ) at the angles 83.5◦ and 69.0◦ is:

AF (θ1) =
sin
(
Nt
4 z1

)[
sin
(
1
2z1
)]2 [2 cos(Nt

4
z1

)
+ Z

] [
sin

(
Nr

2
z1

)
+ Z sin

(
Nt

4
z1

)]
z1 = π cos θ1 = π cos(83◦.5)

(28)

and

AF (θ2) =
sin
(
Nt
4 z2

)[
sin
(
1
2z2
)]2 [2 cos(Nt

4
z2

)
+ Z

] [
sin

(
Nr

2
z2

)
+ Z sin

(
Nt

4
z2

)]
z2 = π cos θ2 = π cos(69◦.0)

(29)

In our first effort we equate the second parts of (28) and (29) and get a quadratic equation with respect
to Z. Solving the equation analytically we have the final value of Z which gives Z = 1.09. In Fig. 10,
the two-way array factor is presented. It has an SLL < −50.6 dB which is lower than those given before.
In [13] and [14], the two higher sidelobe levels of the two-way array factors are not equal. This means
that they do not give the lowest SLL. In [14], an array with Nt = 80, Nr = 64, and Z = 1.13 gave
SLL < −51.05 dB. With Z = 1.09 a lower value of SLL < −51.18 dB was found.

For a radar with Nt = 128, M = 64 it is Nr
Nt

= 102
128 which is not exactly 0.8, and the value of Z is

found to be ∼ 1.11. The two-way array factor is shown in Fig. 11, and the SLL becomes < −51.10 dB.
Based on the above examples, the steps of choosing radar arrays with even number of elements are

the following:

(i) Choose the number of transmit elements N te =4k and elements M=2k with higher amplitude.

(ii) Find the ratio of Nre
Nte

which must be ∼ 0.8.

(iii) Find the two-way array factor for W 1 =1.0.

(iv) Find the final W 1 by equating the two higher sidelobes of the previous two-way array factor.
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Figure 10. The two-way array factor for Nt =
40, M = 20, Nr = 32 and Z = 1.09 and
W1 = 0.957.

Figure 11. The two-way array factor for Nt =
128, M = 64, Nr = 102 and Z = 1.11 &
W1 = 0.948. SLL becomes < −51.10 dB.

For arrays with odd number of elements, the design can take place by subtracting (or adding) one
element of the corresponding even arrays. Following the procedure of the three-weight case, we have

Nto = Nte − 1, Mo = Odd

{
Nte

2
,
Nte − 2

2

}
and Nre = 0.8Nte ∼ 2l − 1 (30)

The array factors become

AFt (θ) = 2
e−j

Nto
2

π cos θ

(Nto + ZMo)

{
sin
(
Nto
2 π cos θ

)
+ Z sin

(
Mo
2 π cos θ

)
sin
(
1
2π cos θ

) }

AFr (θ) = 2
e−jNro

2
π cos θ

(Nro + ZMo)

{
sin
(
Nro
2 π cos θ

)
+ Z sin

(
Mo
2 π cos θ

)
sin
(
1
2π cos θ

) } (31)

We start our study for Z = 1. Zeroing the function

Ft (θ) = sin

(
Nto

2
π cos θ

)
+sin

(
Mo

2
π cos θ

)
= 2 sin

(
Nto +Mo

4
π cos θ

)
×cos

(
Nto −Mo

4
π cos θ

)
(32)

we get the nulls of the transmit array in the following angles

θti = cos−1

[
4i

Nto +Mo

]
, i = 1, 2, 3, . . .

θtl = cos−1

[
2 (2m− 1)

Nto −Mo

]
,m = 1, 2, 3 . . .

(33)

For the two different cases of (30) we take

(i) Nto = Nte − 1 and Mo =
Nte
2 = Odd number

θti = cos−1

[
8i

(3Nte − 2)

]
, i = 1, 2, 3, . . .

θtl = cos−1

[
4 (2m− 1)

(Nte − 2)

]
, m = 1, 2, 3 . . .

(34)

(i) Nto = Nte − 1 and Mo =
Nte−2

2 =Odd number

θti = cos−1

[
8i

(3Nte − 4)

]
, i = 1, 2, 3, . . .

θtl = cos−1

[
4 (2m− 1)

Nte

]
, m = 1, 2, 3 . . .

(35)
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In the directions θ1 and θ2 of the two higher sidelobes, we equate the two-way array factor and
analytically solve the quadratic equation for Z.

Let us take an example for a radar with Nt = 2 × 92 − 1 = 183, M = 92 − 1 = 91, and
Nr = 0.8 × 183 ∼ 147. We equate the higher sidelobes, which are at the angles 88.6◦ and 85.5◦.
The solution of the quadratic equation gives Z ∼ 1.14 and W1 = 0.9346. In Fig. 12, we see the two-way
array factor with SLL < −51.0 dB.

Figure 12. The two-way array factor for Nt =
183, M = 91, Nr = 147 and W1 = 0.9346. SLL
becomes < −51.0 dB.

Figure 13. The two-way array factor for Nt =
253, M = 127, Nr = 203 and W1 = 0.9346. SLL
becomes < 51.2 dB.

For Nt = 254− 1 = 253, M = 254/2 = 127, Nr = 203, and W1 = 0.9346, the achieved SLL is less
than −51.2 dB (see Fig. 13). The results of the examples of [14] were compared with our results, and
in all cases our SLLs were lower.

The presented examples have shown that the two-way array factors can achieve SLL up to
< −51.2 dB. This value is lower than the ones given in the literature. Our contribution for the design
of the two-weight arrays is finding the optimum ratio Nr

Nt
and W by clearly justifying the steps of the

procedure. It should be mentioned here that except for [13–15] the authors did not find results of other
relevant works to compare.

4. DISCUSSION

It is known that for radar arrays the more the different weight excitations are, the less the maximum
SLL of the two-way patterns is. More weights offer more degrees of freedom in the array design. The
limit is to have different weights for each element which will give transmit and/or receive arrays with
theoretically the lowest SLL level. The resulting performance compared to that of a simpler practical
implementation will require the choice of the excitation.

To have the exact two-way antenna pattern, we must consider the element pattern as well as the
mutual coupling between the elements. Mutual coupling results in a loss of the radar signals. It depends
on the shape, spacing, and the number of antenna elements. Mutual coupling affects the antenna pattern
for larger scan angles [10, 11]. The choice of the elements depends on the scanning requirements and
the frequency. In our case, mutual coupling and element patterns were ignored because, if the array
is well calibrated, they have little impact on the antenna nulls and sidelobes that are near the main
lobe [10, 11]. Thus, our work contains important main aspects of the implementation.

It is noticed [11, 13] that planar arrays can be designed with the same concept of linear arrays. In
a planar array [11], the edge elements will be turned off for the receive array. Planar arrays provide
more variables and offer higher directivity than linear ones. The same procedure as above can create
equally sufficient SLL of two-way array patterns.

All calculations and presentations of the patterns were made by using the ORAMA computer
tool [20].
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5. CONCLUSION

A systematic study for lowering the peak SLL of a radar two-way array factor has been presented.
Transmit and receive arrays with two- and three-weight excitations were used. The three-weight
excitation is a taper distribution that offers better SLL performance.

The two-weight case combines more the advantages of taper distribution and the simplicity of
the feed network of uniform arrays [13]. The amplitude of the element excitation in the middle of
the transmit and receive arrays is the same. Certain steps were used for the number of elements and
excitations. The elements in the middle for the two-weight case are approximately one half the total of
the ones of the transmit array. The ratio Nr

Nt
was found from the case of W1 = 1 and by using a pair

of conditions of appearance of two minor lobes of the transmit array pattern at the position of certain
nulls of the receive one. The corresponding weight in the middle was derived from equating two higher
sidelobes which appear in the two-way array factor.

In the case of three-weight excitation, the number of transmit array elements is equal to the total
of those that have weight W2 = 2 and W3 = 3. Two cases of M and L were used. One with M = 5

8Nt,

L = 3
8Nt and the other with M = 7

12Nt, L = 5
12Nt. The ratio

Nr
Nt

was found from the case of W1 = 1 and
the conditions of appearance of minor lobes of the transmit array pattern at the position of certain nulls
of the receive one. The excitation W1 was found by equating two higher sidelobes which appear in the
two-way array factor. For the case of odd number of elements, the array design is made by subtracting
(or adding) one element of the corresponding even numbered array. For a one-weight radar array with
Nt = 1.4Nr, the peak SLL is −31.48 dB [13]. For the two-weight array it is −51.2 dB, while for the
three-weight array it becomes −56.5 dB, as shown in this work. It is obvious that for the two-weight
array the detection threshold will be −19.72 dB (93.75 times) less than the one-weight array, and for the
three-weight array the threshold will be −25.02 dB (317.7 times) less. Such values of threshold allow a
sufficient performance for the radar systems.

APPENDIX A.

Table A1. Positions of nulls and sidelobes of the three-weight transmit array pattern for L = 3
8Nt.

Null no. cos θ Null no. cos θ SL no. cos θ SL no. cos θ

1 16
5Nt

6 12
Nt

1 18
5Nt

6 14
Nt

2 4
Nt

7 16
Nt

2 14
3Nt

7 81
5Nt

3 16
3Nt

8 16
Nt

3 20
3Nt

8 81
5Nt

4 8
Nt

9 16
Nt

4 44
5Nt

9 81
5Nt

5 48
5Nt

10 112
5Nt

5 54
5Nt

10 81
5Nt

Table A2. Positions of nulls and sidelobes of the three-weight transmit array pattern for L = 5
12Nt.

Null no. cos θ Null no. cos θ SL no. cos θ SL no. cos θ

1 24
7Nt

6 12
Nt

1 26
7Nt

6 102
7Nt

2 4
Nt

7 120
7Nt

2 22
5Nt

7 76
5Nt

3 24
5Nt

8 72
5Nt

3 32
5Nt

8 552
35Nt

4 8
Nt

9 16
Nt

4 64
7Nt

9 20
Nt

5 72
7Nt

10 24
Nt

5 78
7Nt

10 21
Nt



Progress In Electromagnetics Research C, Vol. 128, 2023 181

Table A3. Positions of nulls of odd number of elements of the three-weight transmit array pattern.
L = 3

8Nte, L = 5
12Nte.

Null no. cos θ Null no. cos θ SL no. cos θ SL no. cos θ

1 16+a1
75 6 12+a6

Nte
1 24+b1

7Nte
6 12+b6

Nte

2 4+a2
Nte

7 16+a7
Nte

2 4+b2
Nte

7 120+b7
7Nte

3 16+a3
3Nte

8 16+a8
Nte

3 24+b3
5Nte

8 72+b8
5Nte

4 8+b4
Nte

9 16+a9
Nte

4 8+b4
Nte

9 16+9
Nte

5 48+a5
75 10 112+a10

5Nte
5 72+b5

7Nte
10 24+b10

Nte

ai
Nt

≪ 1, i = 1, 2, . . . , 10 and bi
Nt

≪ 1, i = 1, 2, . . . , 10

Table A4. ai and bi of odd number of elements of the three-weight transmit array.

Null no. ai bi

1
256 cos( 12π

10 )
10Nte[1+cos( 12π

10 )]
288 cos( 5π

7 )
7Nte[1+cos( 5π

7 )]

2 4
Nte[1−cos(π

4 )]
4

Nte[1+cos( 5π
6 )]

3 124
9Nte

− 288
Nte

cos( 2π
5 )

[1−cos( 2π
5 )]

4 8
Nte

16
3Nte

5
384 cos( 9π

5 )
5Nte[1+cos( 9π

5 )]
864 cos(π

7 )
7Nte[1+cos(π

7 )]

Table A5. Positions of nulls and sidelobes (SL) of the two-weight transmit array pattern.

Null no. cos θ Null no. cos θ SL no. cos θ SL no. cos θ

1 4
Nt

− 4
Ntπ

y 6 12
Nt

1 4
Nt

− 2
Ntπ

y 6 12
Nt

+ 2
Ntπ

y

2 4
Nt

7 12
Nt

+ 4
Ntπ

y 2 4
Nt

+ 2
Ntπ

y 7 14
Nt

+ 2
Ntπ

y

3 4
Nt

+ 4
Ntπ

y 8 16
Nt

3 6
Nt

+ 2
Ntπ

y 8 18
Nt

− 2
Ntπ

y

4 8
Nt

9 20
Nt

− 4
Ntπ

y 4 10
Nt

− 2
Ntπ

y 9 20
Nt

− 2
Ntπ

y

5 12
Nt

− 4
Ntπ

y 10 20
Nt

5 12
Nt

− 2
Ntπ

y 10 20
Nt

+ 2
Ntπ

y
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