Vol. 126
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-10-26
Band-Stop Filtering for Electromagnetic Interference Rejection in Printed UWB Components Using Single Compact Archimedean Spiral EBG Cell
By
Progress In Electromagnetics Research C, Vol. 126, 23-37, 2022
Abstract
The design and analysis of a compact printed Archimedean spiral electromagnetic bandgap (EBG) structure are presented for frequency shielding in microwave circuits, including antenna and bandpass filters. The EBG characterization resonating at 7.7 GHz is done through a performance matrix such as transmission and reflection coefficients and equivalent circuit modeling, which demonstrates excellent resonance stability. The EBG unit cell is investigated for achieving frequency rejection in the printed monopole-based ultra-wideband (UWB) antenna and bandpass filter circuits. By introducing the Archimedean EBG unit cell on the UWB antenna ground plane, dual-frequency rejection, at 7.4, and 7.7 GHz, was realized. Further, such structure is utilized in a multi-mode resonator (MMR) based UWB bandpass filter to attain band-notched functionality at 7.6 and 7.8 GHz with a maximum attenuation of -16.5, and -15.6 dB, respectively. The prototypes of the EBG-loaded UWB antenna and EBG-Loaded UWB filter are fabricated and characterized. Excellent agreement is achieved between simulated and measured results of both prototypes.
Citation
Sumon Modak, Partha Pratim Shome, Md. Ahsan Halimi, Taimoor Khan, Ahmed A. Kishk, and Tayeb A. Denidni, "Band-Stop Filtering for Electromagnetic Interference Rejection in Printed UWB Components Using Single Compact Archimedean Spiral EBG Cell," Progress In Electromagnetics Research C, Vol. 126, 23-37, 2022.
doi:10.2528/PIERC22082407
References

1. Ray, K. P., "Design aspects of printed monopole antennas for ultra-wideband applications," International Journal of Antennas and Propagation, Vol. 2008, 1-9, Article ID 713858, 2008.

2. Federal Communications Commission "Revision of Part 15 of the Commission's rules regarding ultra-wideband transmission systems,", First Report and Order, FCC 02-48, Washington, DC, 2002.

3. Cicchetti, R., E. Miozzi, and O. Testa, "Wideband and UWB antennas for wireless applications: A comprehensive review," International Journal of Antennas and Propagation, Vol. 2017, 1-46, Article ID 2390808, 2017.

4. Hao, Z. and J. Hong, "Ultra wideband filter technologies," IEEE Microwave Magazine, Vol. 11, No. 4, 56-68, 2010.

5. Fan, S.-T., Y.-Z. Yin, H. Li, and L. Kang, "A novel self-similar antenna for UWB applications with band-notched characteristics," Progress In Electromagnetics Research Letters, Vol. 22, 1-8, 2011.

6. Dastranj, A., "Optimization of a printed UWB antenna: Application of the invasive weed optimization algorithm in antenna design," IEEE Antennas and Propag. Magazine, Vol. 59, No. 1, 48-57, 2017.

7. Wang, L. T., Y. Xiong, and M. He, Review on UWB Bandpass Filters, UWB Technology --- Circuits and Systems, M. Kheir, Intech Open, 2019.

8. Dardeer, O. M., H. A. Elsadek, H. M. Elhennawy, and E. A. Abdallah, "Ultra-wideband bandstop filter with multi transmission zeros using in-line coupled lines for 4G/5G mobile applications," AEU-International Journal of Electronics and Communications, Vol. 131, 1-6, 2021.

9. Shome, P. P., T. Khan, S. K. Koul, and Y. M. M. Antar, "Two decades of UWB filter technology: Advances and emerging challenges in the design of UWB bandpass filters," IEEE Microwave Magazine, Vol. 22, No. 8, 32-51, 2021.

10. Modak, S., T. Khan, T. A. Denidni, and Y. M. M. Antar, "Miniaturized self-isolated UWB MIMO planar/cuboidal antenna with dual X-band interference rejection," AEU-International Journal of Electronics and Communications, Vol. 1431, 1-6, 2022.

11. Shome, P. P., T. Khan, and R. H. Laskar, "A state-of-art review on band-notch characteristics in UWB antennas," Int. Journal of RF and Microwave Comp. Aided Engg., Vol. 29, No. 2, 1-16, 2018.

12. Modak, S., T. Khan, and R. H. Laskar, "Loaded UWB monopole antenna for quad band-notched characteristics," IETE Technical Review, Vol. 39, 1-9, 2021.

13. Xu, J., et al. "A small UWB antenna with dual band-notched characteristics," International Journal of Antennas and Propagation, Vol. 2012, Article ID 656858, 2012.

14. Emadian, S. R., C. Ghobadi, J. Nourina, M. H. Mirmozafari, and J. Pourahmadaza, "Bandwidth enhancement of CPW-fed circle-like slot antenna with dual band-notched characteristics," IEEE Antennas Wireless Propag. Lett., Vol. 11, 543-546, 2012.

15. Modak, S. and T. Khan, "A slotted UWB-MIMO antenna with quadruple band-notch characteristics using mushroom EBG structure," AEU-International Journal of Electronics and Communications, Vol. 134, 1-6, 2021.

16. Lui, W., C. Cheng, and H. Zhu, "Improved frequency notched ultra wideband slot antenna using square ring resonator," IEEE Antennas Wireless Propag. Lett., Vol. 55, No. 9, 2445-2450, 2007.

17. Peddakrishna, S. and T. Khan, "Design of UWB monopole antenna with dual notched band characteristics by using π-shaped slot and EBG resonator," AEU-International Journal of Electronics and Communication, Vol. 96, 107-112, 2018.

18. Azim, R., M. T. Islam, and A. T. Mobashsher, "Dual band-notch UWB antenna with single tri-arm resonator," IEEE Antennas Wireless Propag. Lett., Vol. 13, 670-373, 2014.

19. Ryu, K. S. and A. A. Kishk, "UWB antenna with single or dual band-notches for lower WLAN band and upper WLAN band," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 12, 3942-3950, 2009.

20. Sabouni, A. and A. A. Kishk, "Single or multi notch bands applied to microstrip excited ultra-wideband antennas with dielectric resonator antenna case," Microw. Opt. Technol. Lett., Vol. 55, No. 5, 1066-1069, 2013.

21. Yadav, D., M. P. Abegaonkar, S. K. Koul, V. Tiwari, and D. Bhatnagar, "A compact dual band-notched UWB circular monopole antenna with parasitic resonators," AEU-International Journal of Electronics and Communications, Vol. 84, 313-320, 2018.

22. Salamin, M. A., W. A. E. Ali, S. Das, and A. Zugari, "Design and investigation of a multi-functional antenna with variable wideband/notched UWB behaviour for WLAN/X-band/UWB and Ku-band applications," AEU-International Journal of Electronics and Communications, Vol. 111, 1-7, 2019.

23. Siddiqui, J. Y., C. Saha, and Y. M. M. Antar, "Compact SRR loaded UWB circular monopole antenna with frequency notch characteristics," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 8, 4015-4020, 2014.

24. Siddiqui, J. Y., C. Saha, and Y. M. M. Antar, "Compact dual-SRR-loaded UWB monopole antenna with dual frequency and wideband notch characteristics," IEEE Antennas Wireless Propag. Lett., Vol. 14, 100-103, 2015.

25. Guan, X., P. Gui, T. Xiong, B. Ren, and L. Zhu, "Hybrid microstrip/slot line ultra-wideband bandpass filter with controllable notch band," International Journal of Antennas and Propagation, 1-8, 2017.

26. Zheng, X., Y. Wang, and T. Jiang, "Compact band notched UWB filter based on open-load stub," PIERS Proceedings, 2844-2847, Prague, Czech Republic, Jul. 6-9, 2015.

27. El Omari El Bakali, H., et al. "A compact UWB bandpass filter with WLAN band rejection using hybrid technique," Proc. of the International Conference Interdisciplinary in Engineering (INTER-ENG), 922-926, 2020.

28. Gaun, X., "Slot-line UWB bandpass filters and band-notched UWB filters," UWB Technology and its Applications, Chapter 3, 43-58, 2018.

29. Li, S. L. and W. B. Zeng, "Design of ultra-wideband filter with band-notched characteristic based on left-handed materials," Proceedings of Asia Conf. on Power and Electrical Engineering, 1-5, 2016.

30. Liu, C. Y., T. Jiang, J. Zhang, and Y. S. Li, "A novel UWB filter with notch-band characteristic using radial-loaded stub resonator," Procedia Engineering, Vol. 15, 2428-2433, 2011.

31. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, New York, 2009.

32. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.

33. Lin, B., X. Ye, X. Cao, and F. Li, "Uniplanar EBG structure with improved compact and wideband characteristics," Electronics Letters, Vol. 44, No. 23, 1362-1363, 2008.

34. Ruiz, J. D., F. L. Martinez, and J. Hinojosa, "Novel compact wide-band EBG structure based on tapered 1-D Koch fractal patterns," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1104-1107, 2011.

35. Bhavarthe, P. P., S. S. Rathod, and K. T. V. Reddy, "A compact two via slot-type electromagnetic bandgap structure," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 5, 446-448, 2017.

36. Chiau, C. C., X. Chen, and C. Parini, "Multiperiod EBG structure for wide stopband circuits," IEEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 150, No. 6, 489-492, 2003.

37. Kurra, L., M. P. Abegaonkar, A. Basu, and S. K. Koul, "A band-notched UWB antenna using uni-planar EBG structure," European Conf. on Antennas and Propagation (EuCAP), 2466-2469, Gothenburg, 2013.

38. Song, C. Y., T. Y. Yang, W. W. Lin, and X. L. Yang, "Design of a band-notched UWB antenna based on EBG structure," IEEE Int. Conf. on Applied Superconductivity and Electromag. Devices, 274-277, China, 2013.

39. Abdalla, M. A., A. Al-Mohamadi, and A. Mostafa, "Dual notching of UWB antenna using double inversed U-shape compact EBG structure," International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, 1-3, 2016.

40. Liu, H. and X. Ziqiang, "Design of UWB monopole antenna with dual notched bands using one modified electromagnetic-bandgap structure," Scientific World Journal, Vol. 2013, 1-9, 2013.

41. Mandal, T. and S. Das, "Design of dual notch band UWB printed monopole antenna using electromagnetic bandgap structure," Microw. Opt. Technol. Lett., Vol. 56, 2195-2199, 2014.

42. Mehdi, G., et al. "Miniaturized UWB antenna with dual-band rejection of WLAN/WiMAX using slitted EBG structure," IET Microw. Antennas Propag., 360-366, 2019.

43. Majid, H. A., et al. "Reconfigurable band notch UWB antenna using EBG structure," Proceedings of IEEE Asia-Pacific Conference on Applied Electromagnetic (APACE), 268-270, Johor Bahru, 2014.

44. Jaglan, N., S. D. Gupta, B. Kanaujia, S. Srivastava, and E. Thakur, "Triple band notched DG-CEBG structure based UWB MIMO/diversity antenna," Progress In Electromagnetics Research C, Vol. 80, 21-37, 2018.

45. Jaglan, N., B. Kanaujia, S. D. Gupta, and S. Srivastava, "Triple band notched UWB antenna design using electromagnetic band gap structures," Progress In Electromagnetics Research C, Vol. 66, 139-147, 2016.

46. Rotaruand, K. and J. Sykulski, "Compact electromagnetic bandgap structures for notch band in ultra-wideband applications," Sensors, Vol. 10, 9620-9629, 2010.

47. Kurra, L., M. P. Abegaonkar, A. Basu, and S. K. Koul, "A compact uniplanar EBG structure and its application in band-notched UWB filter," International Journal of Microwave and Wireless Technologies, Vol. 5, 491-498, 2013.

48. Liu, B., Y. Yin, Y. Yang, S. Jing, and A. Sun, "Compact UWB bandpass filter with two notched bands based on electromagnetic bandgap structures," Electronics Letters, Vol. 47, No. 13, 757-758, 2011.

49. Venkatesh, M. N., M. Mandhe, B. N. Kumar, and K. C. S. Kavya, "Experimental design and illustration of narrow band compact microwave notch filter using EBG structure," International Journal of Recent Technology and Engineering, Vol. 7, No. 5, 1-9, 2019.

50. Mohajer-Iravani, B. and O. M. Ramahi, "Wideband circuit model for planar EBG structures," IEEE Trans. Adv. Package, Vol. 33, No. 1, 169-179, 2010.

51. Mohajer-Iravani, B. and O. M. Ramahi, "Electromagnetic interference reduction using electromagnetic bandgap structures in packages, enclosures, cavities, and antennas,", 62-89, Dept. of Electrical and Computer Engineering, University of Maryland, Maryland, 2007.

52. Pozar, D. M., Microwave Engineering, 163-169, Wiley, New York, NY, 1997.

53. Bahl, I. J., Lumped Elements for RF and Microwave Circuits, Artech House, Norwood, MA, 2003.

54. Chaddock, R. E., "The application of lumped element techniques to high frequency hybrid integrated circuits," Radio Electron. Eng., Vol. 44, No. 8, 414-420, 1974.

55. Kurra, L., M. P. Abegaonkar, and S. K. Koul, "Equivalent circuit model of resonant-EBG bandstop filter," IETE Journal of Research, 2015.