Vol. 124
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-09-25
Deep-Learning Linear Sampling Method for Shape Restoration of Multilayered Scatterers
By
Progress In Electromagnetics Research C, Vol. 124, 197-209, 2022
Abstract
A deep learning linear sampling method (DLSM), composed of linear sampling method (LSM) and a convolutional neural network (CNN) of U-Net, is proposed to restore shape of multilayered scatterers with cylindrical or rectangular cross section. Simulations over random samples with different geometrical parameters are used to verify the efficacy of the proposed method.
Citation
Yu-Hsin Kuo, and Jean-Fu Kiang, "Deep-Learning Linear Sampling Method for Shape Restoration of Multilayered Scatterers," Progress In Electromagnetics Research C, Vol. 124, 197-209, 2022.
doi:10.2528/PIERC22081005
References

1. Bevacqua, M. and T. Isernia, "Shape reconstruction via equivalence principles, constrained inverse source problems and sparsity promotion," Progress In Electromagnetics Research, Vol. 158, 37-48, 2017.
doi:10.2528/PIER16111404

2. Bevacqua, M. T. and R. Palmeri, "Qualitative methods for the inverse obstacle problem: A comparison of experimental data," J. Imaging, Vol. 5, No. 4, 47, Apr. 2019.
doi:10.3390/jimaging5040047

3. Shao, W. and Y. Du, "Microwave imaging by deep learning network: Feasibility and training method," IEEE Trans. Antennas Propagat., Vol. 68, No. 7, 5626-5634, Jul. 2020.
doi:10.1109/TAP.2020.2978952

4. Agarwal, K., X. Chen, and Y. Zhong, "A multipole-expansion based linear sampling method for solving inverse scattering problems," Optics Express, Vol. 18, No. 6, 6366-6381, 2010.
doi:10.1364/OE.18.006366

5. Cakoni, F., D. Colton, and P. Monk, The Linear Sampling Method in Inverse Electromagnetic Scattering, SIAM Press, 2011.
doi:10.1137/1.9780898719406

6. Catapano, I., L. Crocco, and T. Isernia, "On simple methods for shape reconstruction of unknown scatterers," IEEE Trans. Antennas Propagat., Vol. 55, No. 5, 1431-1436, May 2007.
doi:10.1109/TAP.2007.895563

7. Burfeindt, M. J. and H. F. Alqadah, "Qualitative inverse scattering for sparse-aperture data collections using a phase-delay frequency variation constraint," IEEE Trans. Antennas Propagat., Vol. 68, No. 4, 7530-7540, Nov. 2020.

8. Potthast, R., "A study on orthogonality sampling," Inverse Problem, Vol. 26, No. 7, 074015, 2010.
doi:10.1088/0266-5611/26/7/074015

9. Bevacqua, M. T., T. Isernia, R. Palmeri, M. N. Akinci, and L. Crocco, "Physical insight unveils new imaging capabilities of orthogonality sampling method," IEEE Trans. Antennas Propagat., Vol. 68, No. 5, 4014-4021, May 2020.
doi:10.1109/TAP.2019.2963229

10. Li, J. Z., H. Y. Liu, and J. Zou, "Strengthened linear sampling method with a reference ball," SIAM J. Sci. Comput., Vol. 31, 4013-4040, 2009.
doi:10.1137/080732389

11. Crocco, L., L. D. Donato, I. Catapano, and T. Isernia, "An improved simple method for imaging the shape of complex targets," IEEE Trans. Antennas Propagat., Vol. 61, No. 2, 843-851, Feb. 2013.
doi:10.1109/TAP.2012.2220329

12. Guo, R., Z. Jia, X. Song, M. Li, F. Yang, S. Xu, and A. Abubakar, "Pixel-and model-based microwave inversion with supervised descent method for dielectric targets," IEEE Trans. Antennas Propagat., Vol. 68, No. 12, 8114-8126, Jun. 2020.
doi:10.1109/TAP.2020.2999741

13. Jun. 2020, Z. and X. D. Chen, "Deep-learning schemes for full-wave nonlinear inverse scattering problems," IEEE Trans. Geosci. Remote Sensing, Vol. 57, No. 4, 1849-1860, Apr. 2019.
doi:10.1109/TGRS.2018.2869221

14. Ronneberger, O., P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," Medical Image Computing and Computer-Assisted Intervention (MICCAI), 234-241, 2015.

15. Khoshdel, V., A. Ashraf, and J. LoVetri, "Enhancement of multimodal microwave-ultrasound breast imaging using a deep-learning technique," Sensors, Vol. 19, No. 18, 4050, 2019.
doi:10.3390/s19184050

16. Yao, H. M., W. E. I. Sha, and L. Jiang, "Two-step enhanced deep learning approach for electromagnetic inverse scattering problems," IEEE Antennas Wireless Propagat. Lett., Vol. 18, No. 11, 2254-2258, Jan. 2019.
doi:10.1109/LAWP.2019.2925578

17. Sanghvi, Y., Y. Kalepu, and U. K. Khankhoje, "Embedding deep learning in inverse scattering problems," IEEE Trans. Comput. Imag., Vol. 6, 46-56, Jul. 2020.

18. Yago, A., M. Cavagnaro, and L. Crocco, "Deep learning-enhanced qualitative microwave imaging: Rationale and initial assessment," EuCAP, 1-5, Dusseldorf, Germany, Mar. 2021.

19. Crocco, L., I. Catapano, L. D. Donato, and T. Isernia, "The linear sampling method as a way to quantitative inverse scattering," IEEE Trans. Antennas Propagat., Vol. 60, No. 4, 1844-1853, Apr. 2012.
doi:10.1109/TAP.2012.2186250

20. Colton, D., H. Haddar, and M. Piana, "The linear sampling method in inverse electromagnetic scattering theory," Inverse Problem, Vol. 19, 105-137, 2003.
doi:10.1088/0266-5611/19/6/057

21. Alom, M. Z., M. Hasan, C. Yakopcic, T. M. Taha, and V. K. Asari, "Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation,", arXiv 1802.06955, 2018.

22. Kim, P., MATLAB Deep Learning with Machine Learning, Neural Networks and Artificial Intelligence, APress, 2017.

23. Xu, K., L. Wu, X. Ye, and X. Chen, "Deep learning-based inversion methods for solving inverse scattering problems with phaseless data," IEEE Trans. Antennas Propagat., Vol. 68, No. 11, 7457-7470, Nov. 2020.
doi:10.1109/TAP.2020.2998171

24. Vedaldi, A., K. Lenc, and A. Gupta, "MatConvNet: Convolutional neural networks for MATLAB," ACM Int. Conf. Multimedia, 689-692, 2015.