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Deep-Learning Linear Sampling Method for Shape Restoration
of Multilayered Scatterers

Yu-Hsin Kuo and Jean-Fu Kiang*

Abstract—A deep learning linear sampling method (DLSM), composed of linear sampling method
(LSM) and a convolutional neural network (CNN) of U-Net, is proposed to restore shape of multilayered
scatterers with cylindrical or rectangular cross section. Simulations over random samples with different
geometrical parameters are used to verify the efficacy of the proposed method.

1. INTRODUCTION

Various types of inverse scattering problem (ISP) have been developed to retrieve object shape
and properties from the scattering fields in surveillance [1], medical diagnosis [2], and geographical
exploration [3]. The formulations are usually ill-posed and require some prior knowledge or constraints
to acquire the solutions [4]. Linear sampling method (LSM) has been used for restoring object
shape [5, 6], by solving linear equations at each pixel in a detection domain, without resorting to
nonlinear optimization techniques [7]. An orthogonality sampling method (OSM) was proposed for
shape reconstruction from the reduced scattering field computed using the Green’s function [2, 8, 9].
Both LSM and OSM were based on an indicator function and required some empirical threshold.

In conventional LSMs, an empirical threshold was chosen to determine if a pixel belonged in an
object [10], with no definite method on how to choose a proper threshold. In [10], a reference ball was
artifically added to the detection domain, and a threshold was determined by trial-and-error on the
restored image. In [11], an indicator function of LSM was proposed in terms of multipole expansion.
The object shape was better restored by using only the monopole and dipole terms [4] than using
conventional LSMs.

In [7], a phase-delay frequency variation (PDFV) method was proposed to highlight the object
shape by using the phase information of LSM over multiple frequencies. The phases of LSM at different
frequencies were related to the electrical length traversed by the incident wave from the transmitters to
the pixel of interest. Some artifacts can be reduced by exploiting multiple frequencies, but an empirical
threshold is still required.

Other than the threshold issue, it was observed that conventional LSM had difficulty in
distinguishing solid cylinder from ring [6]. The modified LSM in [11] can distinguish a solid object
from a hollow one, but an object surrounded with a rectangular wall could not be clearly restored.

Machine learning methods have been applied to solve ISPs. In [12], a supervised descent method
(SDM) was applied to restore object shape and estimate its permittivity. It was found that multiple
cylinders could be better restored if they were compared with prior models, while complicated shapes
like T or solid-star could be better restored as a cluster of pixels. In [13], an U-Net [14] was applied
in conjunction with three pixel-based methods, direct inversion scheme (DIS), backpropagation scheme
(BPS) and dominant current scheme (DCS). The scattered fields in the DIS were used to estimate the
permittivity profile, while BPS and DCS were used to generate preliminary inverse results as input to
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the U-Net. The DCS was claimed to perform better than subspace optimization methods in restoring
shape and physical properties of an object.

In [15], ultrasound-acquired tissue properties were used as prior information for a contrast source
inversion (CSI) technique. Then, the real part, imaginary part and magnitude of the acquired
permittivity were used as input to the U-Net [14], which improved the accuracy of estimated permittivity
and removed some artifacts in the ultrasound image.

In [16], a deep convolutional neural network (DConvNet) was applied to retrieve the permittivity
distribution from the scattered fields, which was input to a deep residual convolutional neural network
(DRCNN) to highlight the edges of high-contrast objects. In [3], an autoencoder was used to transform
the permittivity distribution in a detection domain of 128 × 128 pixels to a vector of 256 elements,
which were used to train a deep learning network (DLN) in conjunction with the scattered fields. The
autoencoder could well recover high-contrast objects with shapes of square, triangle or square enclosed
by ring, which were otherwise restored as near-circular shape by using distorted Born iterative method
or phase confocal method. In [17], a convolutional neural network (CNN) was combined with an iterative
method to retrieve parameters of high-contrast or complicated objects. In [18], a U-Net was trained
on regular images, with OSM indicators in the RGB channels as input. No threshold was needed as in
conventional OSM, and two adjacent cylinders could be well distinguished with U-Net.

In this work, a deep learning linear sampling method (DLSM) is proposed to restore the shape of
multilayered objects, with LSM indicator as input to a CNN for training and validation. No empirical
threshold, as in conventional LSMs, is required to determine if a pixel belongs in an object. The efficacy
of DLSM is demonstrated and verified with a variety of nested rectangles and nested circles, which are
usually restored as solid rectangles and solid circles, respectively, if using conventional LSMs.

The rest of this paper is organized as follows. The formulations of ISP and LSM are briefly reviewed
in Section 2. The proposed DLSM and U-Net are presented in Section 3. The training data set and
performance indices are presented in Section 4. Simulation results are discussed in Section 5, and some
conclusions are drawn in Section 6.

2. FORMULATION OF ISP AND LSM

Figure 1(a) shows a schematic of 2D scattering problem, with scatterers distributed within a 2D
detection domain (Dd) encircled by Me exciting probes and Mr receiving probes. The detection domain
is divided into Nd uniform pixels. All the probes are placed on a circular perimeter (C0) surrounding
the detection domain, with exciting probes at r̄′′me

, with 1 ≤ me ≤ Me, and receiving probes at r̄mr ,
with 1 ≤ mr ≤ Mr.

The scattering field at r̄, attributed to the exciting probe at r̄′′, is given by

Es(r̄, r̄
′′) = Et(r̄, r̄

′′)− Ei(r̄, r̄
′′) = k2b

∫∫
Dd

G(r̄, r̄′)χ(r̄′)Ēt(r̄
′, r̄′′)dr̄′ (1)

(a) (b)

Figure 1. (a) Schematic of a 2D detection domain (embedding scatterers) encircled by Me exciting
probes (•) and Mr receiving probes (◦). (b) Flow-chart of proposed deep learning linear sampling
method (DLSM).
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where Es(r̄, r̄
′′), Et(r̄, r̄

′′), and Ei(r̄, r̄
′′) are the scattering field, the total field, and the incident

field, respectively, measured at r̄; kb = ω
√
µbϵb is the wavenumber of the background medium, with

permittivity ϵb and permeability µb,

χ(r̄′) =
ϵ(r̄′)− ϵb

ϵb
(2)

is the contrast function, and ϵ(r̄′) is the permittivity at r̄′ ∈ Dd. The 2D Green’s function, G(r̄, r̄′),
satisfies the wave equation (

∇2 + k2b
)
G(r̄, r̄′) = −δ(r̄ − r̄′) (3)

and has the explicit form of

G(r̄, r̄′) = − j

4
H

(2)
0 (kb|r̄ − r̄′|) (4)

where H
(2)
0 is the zeroth-order Hankel’s function of the second kind.

An inverse problem is formed by using Es(r̄, r̄
′′) to estimate ϵ(r̄′) and thus restoring the scatterer

shape in Dd as a by-product. An adjoint equation is formulated as [19, 20]∫
C0

Es(r̄, r̄
′′)ξ(r̄′, r̄′′)dr̄′′ = G(r̄, r̄′) (5)

where ξ(r̄′, r̄′′) is an adjoint field. The contour integral over C0 in (5) can be approximated as a weighted
sum over all the exciting probes as

Me∑
me=1

ζmeEs(r̄, r̄
′′
me

)ξ(r̄′, r̄′′me
) = G(r̄, r̄′) (6)

where ζme is the weighting factor assigned to the meth exciting probe. By taking samples of (6) over
the detection domain, at r̄′ = r̄′nd

, with 1 ≤ nd ≤ Nd, a matrix equation is formed as [5]

¯̄A · f̄ = ḡ (7)

where

Amrme = ζmeEs(r̄mr , r̄
′′
me

),

fme = ξ(r̄′nd
, r̄′′me

),

gmr = G(r̄mr , r̄
′
nd
) (8)

with 1 ≤ me ≤ Me and 1 ≤ mr ≤ Mr. Eq. (7) is then solved to obtain f̄ by using the singular-value
decomposition (SVD) and the Tikhonov regularization techniques.

In this work, we choose the minimum eigenvalue of ¯̄A as the Tikhonov parameter in the SVD,
reducing the burden of finding an empirical Tikhonov parameter. To test the robustness of this approach
under noise, Gaussian random noise with variance δ2g is added to Es of each receiving probe, in the testing

data set, with δ2g = ⟨∥Es∥2⟩10−SNR/10, where SNR is the signal-to-noise ratio.
To determine whether a pixel within the detection domain is part of a scatterer, define an LSM

indicator function for a pixel centered at r̄′nd
as

Iξ(r̄
′
nd
) = 10 log10

Me∑
me=1

ζme

∣∣ξ(r̄′nd
, r̄me)

∣∣2 (9)

It is expected that the magnitude of Iξ(r̄
′
nd
) for a pixel within a scatterer is much smaller than that

outside of scatterers. This property will be used to train an U-Net to restore the object shape.
Recent researches on LSM have focused on improving the LSM indicator function [4, 7], to restore

the object shape, under a specified threshold. In this work, deep learning method is used to train an
U-Net with the LSM function in (9) as input, and no empirical threshold is required.
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3. DEEP LEARNING LINEAR SAMPLING METHOD

Figure 1(b) shows the flowchart of the proposed deep learning linear sampling method (DLSM), which
takes the distribution of LSM indicator in the detection domain to restore the object shape. In the
training phase, the scattered fields at all the receivers from a training object sample are used to compute
an LSM indicator (Iξ) distribution, which is input to the U-Net to estimate an object shape, S̃(r̄′). The
weighting coefficients of the U-Net are fine-tuned by minimizing a loss function, which is the difference
between cross entropies of the estimated object shape S̃(r̄′) and the input object shape S(r̄′).

U-Net has proven its effectiveness in biomedical image segmentation [14, 21] and permittivity
estimation [13]. In this work, the LSM indicator distribution is treated as a 2D image. Fig. 2 shows
the configuration of U-Net adopted in this work, where convp-n (m× 3× 3) is a convolution layer with
m input feature maps and n filters of size 3 × 3, MP (2 × 2) is a 2 × 2 max-pooling layer, upconvp-n
(m × 3 × 3) is an up-convolution layer with m input feature maps and n filters of size 3 × 3, concat
(m + n) is the concatenation of n feature maps from the previous layer and a skip connection of m
feature maps from another layer, forming m + n feature maps to be input to the next layer, and FC
(64×1×1) is a fully connected layer before the output layer. The concat (m+n) is used to compensate
for the blurring effect near object boundary after convolution layer [14].

Figure 2. Configuration of U-Net adopted in this work.

The cross entropy, which has been widely used in segmentation problems, is given by [14, 21, 22]

L = −
Nd∑
n=1

sn log10 pn (10)

where sn = 1 if pixel n belongs in the object and sn = 0 otherwise, and pn is the output of softmax.
The softmax normalizes the exponential of its input vector to have unity norm in its output vector. The
weight of the most probable solution is enhanced and the output vector takes the form of probability
distribution, compatible to the definition of cross entropy in (10).

In the testing phase, the LSM indicator distributions of testing object samples are input to the
U-Net, then the output is used to evaluate the performance of the trained U-Net. The whole process
does not require any empirical threshold as in conventional LSMs.



Progress In Electromagnetics Research C, Vol. 124, 2022 201

(a) (b) (c)

(d) (e) (f)

Figure 3. Geometries and parameters of training and testing samples, (a) circular ring, (b) circle inside
circular ring, (c) circle inside two concentric rings, (d) rectangular ring, (e) rectangle inside rectangular
ring, (f) rectangle inside two rectangular rings.

4. TRAINING DATA SET AND PERFORMANCE INDICES

Due to the non-uniqueness nature of inverse problems, a rectangular object was often restored to have
rounded edges, and the gap between an object and its enclosing ring was often missing in the restored
image. The proposed DLSM turns out to be able to overcome these difficulties. Fig. 3 shows six different
types of training and testing samples used in this work, including rectangular and circular objects, bared
or enclosed with one or two rings. Table 1 lists the ranges of geometrical parameters marked in Fig. 3.
The parameters of each sample are randomly chosen from these specified ranges, the center piece and
the rings are not allowed to touch or overlap with one another. The relative permittivity in each piece
of a sample is randomly picked from the interval of [1, 5]. The background of the detection domain is
assumed to be free space.

Table 1. Ranges of geometrical parameters.

shape (a) (b) (c) (d) (e) (f)

a (m) 0.125–0.5 0.3125–0.4375 0.125–0.625 0.25–1 0.65–1.125 1–1.75

b (m) 0.1875–0.5625 0.3125–0.5 0.2185–0.6875 0.25–1 0.65–1.125 1–1.75

c (m) - 0.375–0.625 0.3125–0.75 0.0625–0.4375 0.525–1 0.90625–1.65625

d (m) - - 0.40625–0.8125 - 0.0625–0.5 0.90625–1.65625

e (m) - - 0.5–0.875 - - 0.8125–1.525

f (m) - - - - - 0.8125–1.525

g (m) - - - - - 0.0625–0.8125

h (m) - - - - - 0.0625–0.71875

To evaluate the fidelity of shape restoration, a total error index It is defined over the whole detection
domain as [7]

It = 100× 1

Nd

Nd∑
n=1

|sn − s̃n| (%) (11)
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where sn and s̃n are the true value and estimated value, respectively; sn = 1 if the nth pixel belongs in
the object and sn = 0 otherwise. A spill-over index Is is defined to count for misclassified pixels exterior
to an object as

Is = 100× 1

Nst

Nst∑
n=1

|sn − s̃n| (%) (12)

where Nst is the total number of pixels exterior to an object. A material index Im is defined to count
for the filled pixels interior to an object as

Im = 100× 1

Nmt

Nmt∑
n=1

|sn − s̃n| (%) (13)

where Nmt is the total number of filled pixels interior to an object. Finally, a gap index Ig is defined to
count for the blank pixels interior to an object as

Ig = 100× 1

Ngt

Ngt∑
n=1

|sn − s̃n| (%) (14)

where Ngt is the total number of blank pixels interior to an object.

5. SIMULATIONS AND DISCUSSIONS

In this section, the size of detection domain shown in Fig. 1(a) is set to 2m × 2m and is divided into
64 × 64 uniform pixels. The operating frequency is set to 400MHz, and 16 exciting probes and 32
receiving probes are placed at uniform spacing on the circular perimeter C0, with radius of 3m. The
training data set contains six types of objects, as specified in Fig. 3, with 200 samples in each type.
An object is considered as a strong scatterer if its contrast function defined in (2) times its size in
wavelengths is greater than one [2, 23].

Most samples in Figs. 3(c) and 3(f) have radius close to one wavelength, and within each type of
the training data set, 100 samples have relative permittivity in [1, 1.5], and the other 100 samples have
relative permittivity (of at least one component) in [1.5, 5]. The testing data set contains the same six
types of objects, with 50 samples in each type. In each type of the testing data set, 20 samples have
relative permittivity in [1, 1.5], and the other 30 samples have relative permittivity (of at least one
component) in [1.5, 5].

Then, the U-Net is trained in 600 epochs [24]. To facilitate convergence of the training phase, the
learning rate is set to 10−7 in the first 200 epochs, 10−9 in the subsequent 200 epochs, and 10−11 in the
last 200 epochs [22]. The momentum is set to 0.99 to adjust the change of weight in each layer between
two consecutive iterations [22]. MatConvNet toolbox [22] is used to train the U-Net, on a personal
computer with 3.6GHz Intel Core i7-9700KF CPU and 32GB RAM. Each epoch takes about 2 CPU
minutes, which can be significantly reduced by using GPU parallelization [13, 22].

For comparison, the empirical threshold required in conventional threshold method is determined
as [4]

vth = min{Iξ}+ γ (max{Iξ} −min{Iξ}) (15)

with γ = 0.5 [7].

5.1. Test on Nested Circles

First input the 50 testing samples of circular ring to the trained U-Net, one at a time. The four indices
defined in (11)–(14) are applied to the output of each sample. Fig. 4 shows the images of four restored
samples, with their It at the percentiles of 10, 30, 50, and 90, respectively.

The LSM indicator in the second row reveals some sketchy ring shape, which looks closer to the
true shape when the relative permittivity is low. The conventional threshold method restores a solid
circular shape in these four samples, suggesting that the results are sensitive to a proper empirical
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(a) (b) (c) (d)

Figure 4. Restored samples of circular ring at It percentile of (a) 10, (b) 30, (c) 50, (d) 90; SNR
= 20dB, first row: true relative permittivity, second row: LSM indicator, third row: threshold method,
fourth row: DLSM.

(a) (b) (c) (d)

Figure 5. Restored samples of circle inside circular ring at It percentile of (a) 10, (b) 30, (c) 50, (d)
90; SNR = 20 dB, first row: true relative permittivity, second row: LSM indicator, third row: threshold
method, fourth row: DLSM.

threshold. On the other hand, the DLSM can faithfully restore a circular ring, with some speckles on
the background.

Figure 5 shows the images of four restored samples of circle inside circular ring, with their It at
the percentiles of 10, 30, 50, and 90, respectively. The LSM indicator in the second row of Fig. 5(a)
reveals features of the object shape, but the other three in the second row look like a solid circle, with
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the outer ring merging with the inside circle. The threshold method restores these samples as solid
circles without gap in between. The shapes restored with the DLSM are discernible, with some samples
displaying voids in the ring, crack in the circle and speckles in the background. There are two possible
causes for these artifacts. First, the training samples contain no noise, hence testing samples with noise
may arouse some artifacts. Second, increasing the number of training samples may help reduce these
artifacts.

Figure 6 shows the images of four restored samples of circle inside two concentric rings, at the
same It percentiles as in the previous two cases. The LSM indicator in the second row of Figs. 6(b)
and 6(c) portray a circle smaller than the true object, possibly because the outermost ring has higher
permittivity and ring width, blocking the scattered field from the inner circle. The threshold method
seems to work for sample in Fig. 6(b), but misses the gaps in the other three samples. Similar results
were observed in [2], suggesting that conventional LSM may not work well in restoring strong scatterers.
On the other hand, the DLSM can restore the first three samples clearly. The three parts in the fourth
sample are partially connected, but each part is still discernible.

(a) (b) (c) (d)

Figure 6. Restored samples of circle inside two concentric rings at It percentile of (a) 10, (b) 30, (c)
50, (d) 90; SNR = 20 dB, first row: true relative permittivity, second row: LSM indicator, third row:
threshold method, fourth row: DLSM.

Figure 7 shows the cumulative distributions of the four performance indices associated with circular
ring (shape c1), circle inside circular ring (shape c2) and circle inside two concentric rings (shape c3),
respectively. Among the testing samples of circular ring, 95% of them have It < 10% and 75% of them
have It < 5%. The It index of shape c3 after 80th percentile becomes higher than those of shapes c1
and c2, which is consistent with the observation that the worst restored shapes of more complicated
geometry become more fragmented as shown in the fourth row of Fig. 6(d).

The spill-over index of all the three shapes is insignificant before the 50th percentile. The material
index Im < 30% for about 80% of shapes c1 or c3, and 50% of shape c2. The Ig index in the first 40
percentiles of samples with shapes c1 and c3 is negligible, which confirms the efficacy of the DLSM in
restoring the blank space interior to a layered object.

5.2. Test on Nested Rectangles

Figure 8 shows the images of four testing samples of rectangular ring at the It percentiles of 10, 30, 50,
and 90, respectively. The images in the third row acquired with the threshold method resemble their
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(a) (b)

(c) (d)

Figure 7. Cumulative distribution of (a) It, (b) Is, (c) Im, (d) Ig; ——–: circular ring, −−−: circle
inside circular ring, ——–: circle inside two concentric rings.

(a) (b) (c) (d)

Figure 8. Restored samples of rectangular ring at It percentile of (a) 10, (b) 30, (c) 50, (d) 90; SNR
= 20dB, first row: true relative permittivity, second row: LSM indicator, third row: threshold method,
fourth row: DLSM.

counterpart LSM indicator distributions in the second row. The sharp corners are severely rounded
in samples (a) and (b), and a vertical stub appears in the middle of sample (a). The restored images
take solid circular shape in samples (c) and (d). The restored shape in sample (c) is severely distorted
possibly because the ring with large relative permittivity prevents the incident wave from penetrating it.
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(a) (b) (c) (d)

Figure 9. Restored samples of rectangle inside rectangular ring at It percentile of (a) 10, (b) 30, (c)
50, (d) 90; SNR = 20 dB, first row: true relative permittivity, second row: LSM indicator, third row:
threshold method, fourth row: DLSM.

On the other hand, the acquired images of samples (a) and (b) with the DLSM preserve sharp corners
of rectangle without cracks, and some speckles and cracks appear in the images of samples (c) and (d).

Figure 9 shows the images of four restored samples of rectangle inside rectangular ring at the
same It percentiles as in the previous case. The LSM indicator distributions display hub-radiant spike
features but do not clearly show the inner rectangle, except in sample (b), which possesses a narrow
ring with lower relative permittivity. The ring in sample (a) has higher permittivity, which prevents
the incident waves from penetrating it. In contrast, the image of sample (a) acquired with the DLSM
faithfully restore the original shape. The images of samples (b), (c) and (d) are significantly smeared,
but the features of rectangle and rectangular ring are recognizable. Fig. 10 shows the images of four
restored samples of rectangle inside two rectangular rings, at the same It percentiles as in the previous
cases. For samples (a) and (b), with lower permittivity, their LSM indicator distributions reveal the
central rectangle, but the three components are clumped into one chunk in the images acquired with the
threshold method. For sample (c), higher permittivity of the outer ring prevents the incident waves from
probing the interior rectangle, as shown in its LSM indicator distribution and the acquired image with
the threshold method. In contrast, lower permittivity of the outer ring in sample (d) allows the incident
waves to probe the interior rectangle, as shown in its LSM indicator distribution and the acquired image
with the threshold method.

The DLSM cannot restore the shapes as neatly as in the last two figures. The basic skeleton can
be recognized, with many additional cracks and speckles.

Figure 11 shows the cumulative distributions of the four performance indices associated with
rectangular ring (shape r1), rectangle inside rectangular ring (shape r2) and rectangle inside two
rectangular rings (shape r3), respectively. Among the testing samples of shape r1, 90% of them have
It < 10% and 70% of them have It < 5%. The It index of shape r3 is significantly higher than those of
shapes r1 and r2 due to the more complicated geometry of the former. The spill-over index of all the
three shapes is insignificant in the first 30 percentiles of samples.

The material index of shapes r1 and r2 is Im < 20% for about 50% of the samples, and Im < 50%
for about 50% of the samples in shape r3. The Ig index is negligible in the first 40 percentiles of shape
r1, and the first 20 percentiles of shape r2. All these indices suggest that samples of shape r3 are more
difficult to restore than those of shapes r1 and r2. The samples which are not well restored with the
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(a) (b) (c) (d)

Figure 10. Restored samples of rectangle inside two rectangular rings at It percentile of (a) 10, (b)
30, (c) 50, (d) 90; SNR = 20dB, first row: true relative permittivity, second row: LSM indicator, third
row: threshold method, fourth row: DLSM.

(a) (b)

(c) (d)

Figure 11. Cumulative distribution of (a) It, (b) Is, (c) Im, (d) Ig; ——–: rectangular ring, − − −:
rectangle inside rectangular ring, ——–: rectangle inside two rectangular rings.

threshold method also cast large indices when restored with the DLSM.
In summary, the DLSM has been demonstrated to effectively restore the shapes of circular and

rectangular layered objects, which are more complicated than those presented in the literature, especially
when interior gaps are included. Some geometrical features that cannot be faithfully restored with
conventional threshold method can be better restored with the proposed DLSM.
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5.3. Test on Austria Profile

Figure 12 shows a testing sample of Austria profile with relative permittivity equal 1.5, which is not
included in the training dataset. Some geometrical features are revealed in the LSM indicator and
the acquired image with the DLSM, but the fidelity to the true shape can be subjective. The It
indices of threshold method and DLSM are 19% and 15.4%, respectively. The proposed method has the
performance matches that of conventional LSM, even when the shape is not included in the training
data set.

(a) (b) (c) (d)

Figure 12. Restored Austria profile, SNR = 20 dB, (a) true permittivity, (b) LSM indicator, (c)
threshold method, (d) DLSM.

6. CONCLUSIONS

A DLSM is proposed by integrating a CNN type of U-Net and LSM to restore the shape of 2D layered
objects embedding interior gaps, without requiring any empirical threshold. Four performance indices
are defined to compare the restored shape to the original shape of object. The simulation results of
conventional LSM threshold method are compared. The pixelwise error of the DLSM is much lower
than that of the threshold method. The DLSM can restore the gaps interior to layered objects more
accurately and can distinguish rounded corners from sharp corners.
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