Vol. 125
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-10-04
A Two-Step Learning-by-Examples Method for Photovoltaic Power Forecasting
By
Progress In Electromagnetics Research C, Vol. 125, 35-49, 2022
Abstract
In this paper, an innovative machine learning (ML) approach for the prediction of the output power generated by photovoltaic (PV) plants is presented. Toward this end, a two-step learning-by-examples (LBE) strategy based on support vector regression (SVR) is proposed to learn the complex relation among the heterogeneous parameters affecting the energy production of the power plant. More specifically, the first step is aimed at down-scaling the weather forecasts from the standard air temperature and the solar irradiance to the local module temperature and the plane-of-array (POA) irradiance. Then, the second step predicts the output power profile given the down-scaled forecasts estimated at the previous step. The advantages and the limitations of the proposed two-step approach have been experimentally analyzed exploiting a set of measurements acquired in a real PV plant. The obtained results are presented and discussed to point out the capabilities of the proposed LBE method to provide robust and reliable power predictions starting from simple weather forecasts.
Citation
Alessandro Polo, "A Two-Step Learning-by-Examples Method for Photovoltaic Power Forecasting," Progress In Electromagnetics Research C, Vol. 125, 35-49, 2022.
doi:10.2528/PIERC22061003
References

1. UN General Assembly "Transforming our world: The 2030 Agenda for Sustainable Development,", Oct. 21, 2015, A/RES/70/1, available at: https://www.refworld.org/docid/57b6e3e44.html [accessed Jun. 7, 2022].
doi:10.3390/en12091621

2. GSE "ARG/elt 4/10 --- Procedure to improve the predictability of the electricity input from implants using renewable energy sources that are not programmable about not relevant production units,", Jan. 2010.
doi:10.1080/09205071.2017.1402713

3. Nespoli, A., et al. "Day-ahead photovoltaic forecasting: A comparison of the most effective techniques," Energies, Vol. 12, No. 9, 1621, 2019.

4. Massa, A., G. Oliveri, M. Salucci, N. Anselmi, and P. Rocca, "Learning-by-examples techniques as applied to electromagnetics," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 4, 516-541, 2018.
doi:10.1109/LAWP.2019.2916369

5. Salucci, M., M. Arrebola, T. Shan, and M. Li, "Artificial intelligence: New frontiers in real-time inverse scattering and electromagnetic imaging," IEEE Trans. Antennas Propag., DOI: 10.1109/TAP.2022.3177556.
doi:10.2528/PIERC22013002

6. Massa, A., D. Marcantonio, X. Chen, M. Li, and M. Salucci, "DNNs as applied to electromagnetics, antennas, and propagation --- A review," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 11, 2225-2229, Nov. 2019.
doi:10.1109/TGRS.2016.2591439

7. Elshennawy, W., "Large intelligent surface-assisted wireless communication and path loss prediction model based on electromagnetics and machine learning algorithms," Progress In Electromagnetics Research C, Vol. 119, 65-79, 2022.

8. Salucci, M., N. Anselmi, G. Oliveri, P. Calmon, R. Miorelli, C. Reboud, and A. Massa, "Real-time NDT-NDE through an innovative adaptive partial least squares SVR inversion approach," IEEE Trans. Geosci. Remote Sens., Vol. 54, No. 11, 6818-6832, Nov. 2016.
doi:10.1109/TAP.2018.2835566

9. Liu, F., Y. Wu, H. Duan, and R. Du, "SVR-CMT Algorithm for null broadening and sidelobe control," Progress In Electromagnetics Research, Vol. 163, 39-50, 2018.
doi:10.1002/mop.30821

10. Salucci, M., L. Tenuti, G. Oliveri, and A. Massa, "Efficient prediction of the EM response of reflectarray antenna elements by an advanced statistical learning method," IEEE Trans. Antennas Propag., Vol. 66, No. 8, 3995-4007, Aug. 2018.
doi:10.2528/PIERM20050805

11. Salucci, M., J. Vrba, I. Merunka, and A. Massa, "Real-time brain stroke detection through a learning-by-examples technique --- An experimental assessment," Microw. Opt. Technol. Lett., Vol. 59, No. 11, 2796-2799, Aug. 2017.
doi:10.1109/JERM.2019.2893217

12. Hosseinzadeh, S. and M. Shaghaghi, "GPR data regression and clustering by the fuzzy support vector machine and regression," Progress In Electromagnetics Research M, Vol. 93, 175-184, 2020.
doi:10.2528/PIERM16091803

13. Salucci, M., G. Oliveri, and A. Massa, "Real-time electrical impedance tomography of the human chest by means of a learning-by-examples method," IEEE J. Electromagn., RF, Microw. Med. Biol., Vol. 3, No. 2, 88-96, Jun. 2019.
doi:10.1080/09205071.2019.1572546

14. Li, H., B. Zhu, and J. Chen, "Optimal design of photonic band-gap structure based on Kriging surrogate model," Progress In Electromagnetics Research M, Vol. 52, 1-8, 2016.
doi:10.2528/PIERL22031901

15. Salucci, M., N. Anselmi, G. Oliveri, P. Rocca, S. Ahmed, P. Calmon, R. Miorelli, C. Reboud, and A. Massa, "A nonlinear kernel-based adaptive learning-by-examples method for robust NDE-NDT of conductive tubes," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 6, 669-696, Feb. 2019.

16. Rayala, R. and S. Raghavan, "Hexagon shape SIW bandpass filter with CSRRS using artificial neural networks optimization," Progress In Electromagnetics Research Letters, Vol. 104, 47-55, 2022.
doi:10.1109/TSG.2011.2158563

17. Oliveri, G., M. Salucci, and A. Massa, "Towards efficient reflectarray digital twins --- An EM-driven machine learning perspective," IEEE Trans. Antennas Propag., DOI: 10.1109/TAP.2022.3155204.
doi:10.1109/TNNLS.2012.2216546

18. Tanaka, K., K. Uchida, K. Ogimi, T. Goya, A. Yona, and T. Senjyu, "Optimal operation by controllable loads based on smart grid topology considering insolation forecasted error," IEEE Trans. Smart Grid, Vol. 2, No. 3, 438-444, Sep. 2011.
doi:10.1002/pip.1033

19. Capizzi, G., C. Napoli, and F. Bonanno, "Innovative second-generation wavelets construction with recurrent neural networks for solar radiation forecasting," IEEE Trans. Neural Netw. Learn. Syst., Vol. 23, No. 11, 1805-1815, Nov. 2012.
doi:10.1016/0038-092X(91)90023-P

20. Lorenz, E., T. Scheidsteger, J. Hurka, D. Heinemann, and C. Kurz, "Regional PV power prediction for improved grid integration," Progress in Photovoltaic: Research and Applications, Vol. 19, 757-771, 2011.
doi:10.1109/TSTE.2014.2381224

21. Knight, K. M., S. A. Klein, and J. A. Duffie, "A methodology for the synthesis of hourly weather data," Solar Energy, Vol. 46, No. 2, 109-120, 1991.
doi:10.1109/TIA.2012.2190816

22. Liu, J., W. Fang, X. Zhang, and C. Yang, "An improved photovoltaic power forecasting model with the assistance of aerosol index data," IEEE Trans. Sustain. Energy, Vol. 6, No. 2, 434-442, Apr. 2015.

23. Shi, J., W. J. Lee, Y. Liu, Y. Yang, and P. Wang, "Forecasting power output of photovoltaic systems based on weather classification and support vector machines," IEEE Trans. Ind. Appl., Vol. 48, No. 3, 1064-1069, May 2012.

24. Yona, A., T. Senijyu, A. Y. Seber, T. Funabashi, H. Sekine, and C. H. Kim, "Application of neural network to 24-hour-ahead generating power forecasting for PV system," Proceedings of Power and Energy Society General Meeting --- Conversion and Delivery of Electrical Energy in 21st Century, 1-6, 2008.

25. Wang, F., Z. Mi, S. Su, M. Chen, and C. Zhang, "practical model for single-step power prediction of grid-connected PV plant using artificial neural network," IEEE Innovative Smart Grid Technologies Asia (ISGT), 1-4, 2011.
doi:10.1016/j.solener.2010.02.006

26. Fonseca, J. G., T. OOzeki, T. Takashima, G. Koshimizu, Y. Uchida, and K. Ogimoto, "Photovoltaic power production forecasts with support vector regression: A study on the forecast horizon," 37th IEEE Photovoltaic Specialists Conference (PVSC) 2011, 1-6, Seattle, WA, USA, Jun. 2011.

27. Mellit, A. and A. M. Pavan, "A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy," Solar Energy, Vol. 84, No. 5, 807-821, 2010.
doi:10.1109/TIA.2012.2190816

28. Shi, J., W.-J. Lee, Y. Liu, Y. Yang, and P. Wang, "Forecasting power output of photovoltaic system based on weather classification and support vector machine," Industry Applications Society Annual Meeting (IAS), 1-6, Orlando, FL, USA, Oct. 2011.

29. Shi, J., W.-J. Lee, Y. Liu, Y. Yang, and P. Wang, "Forecasting power output of photovoltaic systems based on weather classification and support vector machine," IEEE Trans. on Industry App., Vol. 46, No. 3, 1064-1069, Jun. 2012.
doi:10.1109/JPHOTOV.2012.2203794

30. Luque, A. and S. Hegedus, Handbook of Photovoltaic Science and Engineering, 2nd Ed., Wiley, New York, 2011.

31. Colli, A. and W. J. Zaaiman, "Maximum-power-based PV performance validation method: Application to single-axis tracking and fixed-tilt c-Si systems in the Italian Alpine region," IEEE J. Photovolt., Vol. 2, No. 4, 555-563, Oct. 2012.

32. Cristianini, N. and J. S. Taylor, An Introduction to Support Vector Machine, Cambridge University Press, Cambridge, U.K., 2000.

33. Ito, K. and R. Nakano, "Optimizing support vector regression hyperparameters based on cross-validation," Proceedings of the International Joint Conference on Neural Networks, Vol. 3, 2077-2082, Jul. 2003.

34. Smola, A. J. and B. Scholkopf, "From regularization operators to support vector kernels," Neural Information Processing Systems, MIT Press, Cambridge, MA, 1997.
doi:10.1109/TSTE.2014.2359974

35. Mellit, A., A. Massi Pavan, and V. Lughi, "Short-term forecasting of power production in a large-scale photovoltaic plant," Sol. Energy J., Vol. 105, 401-413, Jul. 2014.

36. Yang, C., A. A. Thatte, and L. Xie, "Multitime-scale data-driven spatio-temporal forecast of photovoltaic generation," IEEE Trans. Sustain. Energy, Vol. 6, 104-112, Jan. 2015.

37. Yang, H. T., C. Huang, Y. C. Huang, and Y. Pai, "A weather-based hybrid method for one-day ahead hourly forecasting of PV power output," IEEE Trans. Sustain. Energy, Vol. 5, 917-926, Jul. 2014.

38. Chen, C., S. Duan, T. Cai, and B. Liu, "Online 24-h solar power forecasting based on weather type classification using artificial neural network," Sol. Energy J., Vol. 85, 2856-2870, Nov. 2011.