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A Two-Step Learning-by-Examples Method for Photovoltaic Power
Forecasting

Alessandro Polo*

Abstract—In this paper, an innovative machine learning (ML) approach for the prediction of the output
power generated by photovoltaic (PV ) plants is presented. Toward this end, a two-step learning-by-
examples (LBE ) strategy based on support vector regression (SVR) is proposed to learn the complex
relation among the heterogeneous parameters affecting the energy production of the power plant.
More specifically, the first step is aimed at down-scaling the weather forecasts from the standard air
temperature and the solar irradiance to the local module temperature and the plane-of-array (POA)
irradiance. Then, the second step predicts the output power profile given the down-scaled forecasts
estimated at the previous step. The advantages and limitations of the proposed two-step approach
have been experimentally analyzed exploiting a set of measurements acquired in a real PV plant. The
obtained results are presented and discussed to point out the capabilities of the proposed LBE method
to provide robust and reliable power predictions starting from simple weather forecasts.

1. INTRODUCTION

Nowadays, the increasing cost of energy production through fossil fuels and a renewed attention towards
environmental issues have led worldwide Governments to introduce new laws in order to increase energy
efficiency and decrease the environmental impact of energy production. In this framework, the United
Nations (UN ) has recently identified within its “2030 Agenda for Sustainable Development” goals
urgently addressing paramount issues such as (i) affordable and clean energy (i.e., access to renewable,
safe and widely available energy sources), (ii) sustainable cities and communities (i.e., making cities
safe, inclusive, resilient, and sustainable), (iii) responsible consumption and production (i.e., reversing
current consumption trends and promoting a more sustainable future), and (iv) climate action (i.e.,
regulating and reducing emissions and promoting renewable energy) [1]. Consequently, the diffusion
of renewable energy plants exploiting different energy sources (e.g., wind, sunlight, tides, geothermal
heat) has been consistently increasing in the last years. For instance, the European Member States
have recently developed different strategies in order to fully exploit their territorial characteristics and
maximize the energy production from renewable sources. As an example, Denmark is producing about
30% of the energy demand using wind-farms. The Netherlands have concentrated their production on
off-shore wind plants. Concerning the Mediterranean countries such as Italy, Spain, and Greece, the
photovoltaic (PV ) renewable energy source has been largely adopted to exploit the high solar radiation
on the ground, which is almost twice compared to the north European countries. As an example of
legislation in favour of the renewable energies, the Italian Authority for Electrical Energy and Gas
(AEEG) introduced in 2007 an economic incentive proportional to the PV plant size and power in
order to stimulate the diffusion of PV and solar thermodynamic plants, also at the residential level.
Moreover, the legislation introduced the possibility to sell the produced energy at the market price. As
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a direct consequence, the number of PV plants rises significantly, and such an increase of PV energy
production has caused deep changes in the Italian grid management. Since the PV systems are sensitive
to the fluctuation of the weather conditions, the uncertainty of the power generation may impact on
the stability and reliability of the distribution grid. In order to avoid such a drawback, the energy
generation of conventional power plants (e.g., coal, hydro-electric, nuclear) has to be well managed for
compensation purposes. Regarding the Italian example, such a complex balancing is addressed in the
so-called day-before market, where the energy stakeholders buy and sell the “energy slots” one day in
advance. This approach enables a balanced energy supply to the grid, the reduction of the energy waste,
and the maximum exploitation of the green energy sources. Accordingly, the prediction of the output
power generated by weather-dependent plants is requested by the AEEG at least one day before and
with a error lower than 10% [2]. Moreover, the output power forecasting is mandatory for energy plants
with nominal power higher than 200 [kW].

Artificial intelligence (AI ) and machine learning (ML) are promising candidates to effectively
address the PV forecasting problem [3]. More specifically, the learning-by-examples (LBE ) paradigm
encompasses different supervised learning methodologies [e.g., support vector machines (SVM s),
artificial neural networks (ANN s), Gaussian processes (GPs), and deep neural networks (DNN s)]
enabling the creation of accurate predictors starting from the information embedded within an off-line
generated database of training examples/observations [4–17]. In such a framework, different strategies
have been proposed in the state-of-the-art to predict the output power of PV plants [3]. On the one
hand, the so-called indirect methods [18, 19] are based on the prediction of the solar irradiance exploiting
historical irradiance data in combination with weather forecasts. Successively, the irradiance is adopted
for the estimation of the output power. As an example, Lorenz et al. [20] derived the power predictions
from a refined irradiance forecast computed with the physical modeling and simulation of PV plants.
The regional power production is then obtained by means of up-scaling strategies. However, up-scaling
procedures are suitable for regions characterized by morphological homogeneity, like the German test
fields considered in [20] characterized by uniform and stable weather conditions. It should also be
noticed that the behavior of the solar irradiance is very complex, and its prediction is challenging.
The existing numerical models like the clear-day radiation model or the half-sine hour-by-hour solar
model [21] are often customized and difficult to be widely adopted. LBE methods such as ANN s [22]
or support vector machines SVM s [23] are powerful tools to exploit the statistical properties of the
irradiance time series.

On the other hand, direct methods [24–27] are aimed at estimating the power production considering
the relation between the status of the considered PV plant and the available weather information.
In this context, Shi et al. [28, 29] proposed a power forecast strategy considering a set of predefined
weather models (i.e., sunny, foggy, cloudy, and rainy) and using a support vector regression (SVR)
method trained with the measured solar irradiance, air temperature, and PV output power. The main
drawback of such a predefined weather model is the reduced flexibility in dealing with unpredictable
changes of weather conditions during the day. Similar results have been achieved by Fei et al. [25] using
an ANN trained with multiple time series of the output power, average air temperature, and clear
sky index. However, sub-optimal predictions are achieved using the air temperature, since the power
production is more closely related to the PV module temperature. Approximated equations exist to
compute the PV module temperature from solar irradiance and air temperature, but they are usually
adopted only for quantitative analyses during the performance assessment of the PV modules.

Following this line of reasoning, the objective of this work is to develop a ML methodology for
predicting the output power profile of a PV plant exploiting only the standard weather forecast of the
considered area. Towards this end, an innovative two-step LBE approach based on SVR is proposed
in order to (i) accurately downscale the available weather forecast information to the plane-of-array
(POA) irradiance and PV module temperature, and to (ii) predict the output power profile starting
from the estimated weather-related PV status and considering the complex non-idealities of the power
conversion process, such as the nonlinear behavior of the inverters, cable connection losses, impedance
mismatch, and module orientation angles.

Therefore, the main novelty of this work over the existing literature lies in the development of an
innovative two-step SVR-based methodology capable of predicting the output PV power using common
weather forecasts made available by commercial services. To the best of the author’s knowledge, this is
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the first attempt to apply SVRs to the prediction of the PV power in any weather condition. As a matter
of fact, different from available approaches where daily weather conditions are commonly grouped (e.g.,
sunny, cloudy, etc.) in order to select the customized trained model to improve the performance of the
statistical-based forecasts [23, 24, 35–38], thanks to the adopted downscaling step the proposed method
is particularly flexible and usable when a weather forecast service is available.

The paper is organized as follows. After the definition of the output power as a function of the
weather conditions, the proposed two-steps ML strategy is formulated in Section 2. The experimental
validation performed on a real PV power plant is presented and discussed in Section 3 to point out the
prediction performance of the proposed strategy. Finally, the conclusions are summarized in Section 4.

2. TWO-STEPS LBE STRATEGY

Let us be given a PV power plant composed by K modules, with each one providing the nominal
power pk(t), k = 1, . . . ,K, at the time instant t. The electrical performance of a PV module can be
modeled as a function of the environmental conditions, and consequently the power profile prediction
can be performed exploiting the weather forecast. The commonly forecasted weather data are the air
temperature τ (air)(t) and solar irradiance ι(sun)(t) computed with meteorological models. The spatial
resolution of such predictions is often at regional or district level and could partially represent the real
environmental conditions at the PV plant site. Moreover, the power generation performance is more
dependent on the PV module temperature τ (mod)(t) and the POA irradiance ι(POA)(t).

The first step of the proposed strategy aims at down-scaling the weather forecast through the
unknown functions Υτ and Υι

τ (mod) (t) = Υτ

{
τ (air) (t) , ι(sun) (t)

}
(1)

ι(POA) (t) = Υι

{
τ (air) (t) , ι(sun) (t)

}
(2)

which model the complex effects of the territorial morphology and of the PV plant installation (e.g.,
modules orientation and inclination). Once the down-scaled environmental information is computed,
the total output power P (t) produced by the plant can be estimated as

P (t) = Φ
{
π (t) , τ (mod) (t) , ι(POA) (t)

}
(3)

where π(t) is the theoretical output power numerically computed as follows [30, 31]

π (t) = η × ι(POA) (t)

×
K∑
k=1

{
pk (t)×

[
1− γk (t)

(
τ (mod) (t)− τ̂

)]}
(4)

where η is the efficiency of the DC/AC inverter; γk(t), k = 1, . . . ,K, are the modules power losses related
to the temperature variations; and τ̂ is the reference temperature. The function Φ ·} is introduced to
take into consideration all the unknown non-idealities of the hardware affecting the ideal output power
π(t), like the power losses of the cables, the non-linearity of the string boxes, and the inaccuracy in the
calibration of the modules tilt angle. Summarizing, the uncertainty and time variability of the weather
conditions, the ground morphology, and the complexity of the internal plant components make the
closed-form computation of the functions Υτ , Υι, and Φ very complex. The proposed two-steps LBE
strategy is aimed at estimating such functions exploiting a set of known input-output parameters.

2.1. SVR-Based Machine Learning Strategy

Let us suppose the availability of weather forecast concerning the geographical area where the considered
PV plant is deployed and with prediction time ∆t(pred). In particular, the forecasted solar irradiance
ι(sun)(t+∆t(pred)) and air temperature τ (air)(t+∆t(pred)) are provided at the time instant t. Starting
from such input information, the final objective of the learning strategy is to accurately estimate



38 Polo

the forecasted output power P (t + ∆t(pred)). Toward this end, the problem is formulated as a two-
step regression problem since the input-output data samples are observable and exploitable for the

estimation of the unknown system dynamic and for the approximation of the functions Υ̃τ , Υ̃ι, and Φ̃.
The basic principle of nonlinear SVR [32] is to find the relation from the input space to the output
space, mapping the input data into a higher dimensional feature space, where a linear regression can be
performed. According to the SVM theory, the SVR has the advantage of self-determining its structure
and avoiding initialization problems of the training process [4, 5]. However, the SVR parameters such

as the hyper-parameter C(SV R) and parameter γ(SV R) of the widely used Radial Basis Function (RBF )
kernel have to be determined in advance [13]. Such parameter calibration is a powerful mean for the
regularization, for adaptation to the noise of the training data, and for the control of the network
complexity and generalization capability [34].

The proposed two-step learning process, which is graphically summarized in Fig. 1, is detailed as
follows.

• First step — Weather forecast down-scaling. The first step aims at finding the

surrogate functions Υ̃τ and Υ̃ι on the basis of the training sets {(υ(tm), τ (mod)(tm))}m=1,...,M

and {(υ(tm), ι(POA)(tm))}m=1,...,M , where υ(tm) = [τ (air)(tm), ι(sun)(tm)], m = 1, . . . ,M , are the

input training patterns, while τ (mod)(tm) and ι(POA)(tm), m = 1, ldots,M , are the corresponding

outputs, such that τ (mod)(tm) = Υτ{υ(tm)} and ι(POA)(tm) = Υι{υ(tm)}, respectively. Then, once
the regression functions Υ̃τ and Υ̃ι have been estimated off-line exploiting the available training
data, the online test phase is aimed at down-scaling new weather forecasts given as input the test
set υ(tn), n = 1, . . . , N , where tn > tM +∆t(pred). The output of the first step is the estimation of

Figure 1. Two-steps SVR-based ML strategy.
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the predicted parameters according to

τ̃ (mod) (tn) = Υ̃τ {υ (tn)} (5)

ι̃(POA) (tn) = Υ̃ι {υ (tn)} (6)

• Second step — Output power estimation. The second step addresses the prediction of the

total output power P̃ (t) exploiting the down-scaled weather forecast computed at the previous step.
Toward this end, the unknown operator Φ in (3) is estimated using the set of input-output training

pairs {δ(tm), P (tm)}m=1,...,M , where the input vector δ(tm) = [τ (mod)(tm), ι(POA)(tm), π(tm)],

m = 1, . . . ,M . After the offline generation of the estimated function Φ̃, the predicted output
power obtained using the output of the first learning step is

P̃ (tn) = Φ̃ {δ (tn)} , n = 1, . . . , N (7)

where tn > tM +∆t(pred), n = 1, . . . , N , are the forecasting time instants.

Combining (5), (6), and (7), the final output obtained by the proposed two-steps LBE strategy turns
out to be

P̃ (tn) = Φ̃
{
Υ̃τ

{
τ (air) (tn) , ι

(sun) (tn)
}
,

Υ̃ι

{
τ (air) (tn) , ι

(sun) (tn)
}} . (8)

According to (8), the predicted output power profile of the PV plant has been obtained starting from
the commonly available forecasts of air temperature and solar irradiance.

3. EXPERIMENTAL VALIDATION

The performance of the proposed approach has been assessed using an experimental dataset measured
in a real PV plant with nominal power π ≃ 700 [kW] located in a rural area in the central part of Italy.

The output power P (t), irradiance ι(POA)(t), and temperature τ (mod)(t) have been collected every
∆t = 300 [sec] in different seasons to take into consideration the changing environmental conditions.

The forecasted solar irradiance ι(sun)(t + ∆t(pred)) and air temperature τ (air)(t + ∆t(pred)) have been

acquired using a commercial service for regional weather forecast, with ∆t(pred) = 24 [h].
The selected experiments aim to validate the learning and forecasting capabilities of both the first

and second steps of the proposed method. In particular, the first experiment described in Section 3.1
deals with the validation of the SVR capability to estimate the output power assuming the knowledge
of the weather parameters at the PV plant, while Section 3.2 is aimed at showing the calibration of the
SVR method. The down-scaling of the weather forecast is validated in Section 3.3, and the results are
successively exploited to predict the PV output power. The performance of the two-steps procedure
is presented in Section 3.4. The last experiment addresses the power prediction with training and test
sets collected in different seasons to point out the robustness of the proposed strategy in dealing with
different weather conditions.

The performance of the proposed strategy can be analytically quantified by computing the absolute
error ε between the estimated and real output powers

εn =
∣∣∣P̃ (tn)− P (tn)

∣∣∣ ; n = 1, . . . , N (9)

and the relative error ⟨ε⟩ normalized with respect to the maximum output power

⟨ε⟩n =
εn

maxn {P (tn)}
; n = 1, . . . , N. (10)

Moreover, the mean absolute error ε and mean relative error ⟨ε⟩ have been calculated as follows

ε =
1

N

N∑
n=1

εn (11)

⟨ε⟩ =
1

N

N∑
n=1

⟨ε⟩n (12)
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in order to provide a simple indication of the performance during the whole duration of the prediction

experiments. Similar performance indicators ετ = 1
N

∑N
n=1 ε

(n)
τ , ει = 1

N

∑N
n=1 ε

(n)
ι , where ε

(n)
τ =

|τ̃ (mod)(tn) − τ (mod)(tn)| and ε
(n)
ι = |̃ι(POA)(tn) − ι(POA)(tn)| have also been defined for the estimation

of the down-scaled weather parameters.

3.1. Output Power Estimation with Known Weather-related Parameters

The first experiment is aimed at estimating the output power P̃ (t) assuming the knowledge of

the irradiance ι(POA)(t) and of the module temperature τ (mod)(t). Toward this end, the operator
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Φ has been estimated applying the second step of the proposed SVR-based strategy. A set of
M = 672 input-output training pairs {δ(tm), P (tm)}m=1,...,M , corresponding to a 4-week measurement
campaign has been created, whereas the test data set is composed by N = 168 input vectors
δ(tn) = [τ (mod)(tn), ι

(POA)(tn), π(tn)], n = 1, . . . , N , measured one week after the training period
(Table 1). Such a test period has been selected because varying weather conditions happened, and
the generalization capabilities of the learning approach can be better verified. More in detail, cloudy
and rainy weather conditions occurred during the first and last two days of the considered week, while
the remaining days were sunny. The SVR parameters have been calibrated with the cross-validation
procedure and have been set to C(SV R) = 64 and γ(SV R) = 6.25 × 10−2, respectively. The estimated
output power compared with the actual measurement is shown in Fig. 2(a). As can be noticed, the
power profile has been correctly estimated also during the rainy days. The corresponding relative error
⟨ε⟩ shown in Fig. 2(b) is always below the threshold ⟨ε⟩th = 10 [%] defined by the AEEG regulation.
The mean absolute error is ε = 17.77 [kW] and mean relative error ⟨ε⟩ = 1.56 [%].

Table 1. Size of the training and test sets for the different prediction scenarios.

Scenario Training Set Size, M Test Set Size, N

Short-Term Forecasting 672 168

Long-Term Forecasting 1273 1376

The outcome of this first experiment has pointed out that the SVR-based learning strategy is
suitable to estimate the total output power when the POA irradiance and the module temperature are
known.

3.2. SVR Parameters Calibration

In order to evaluate the stability of the obtained performance respect to the SVR calibration, an
extensive assessment of the training phase has been performed changing the control parameters C(SV R)

and γ(SV R). It is well known that the generalization capabilities of the SVR depend on a good selection
of such meta-parameters, which are usually related to the application-domain knowledge and to the
input data type [4]. The constant C(SV R) > 0 determines the trade-off between the flatness of the
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SVR function and the deviation from the constraints of the optimization problem performed during the
training phase. If C(SV R) is too large, then the main objective of the optimization is to consider the
empirical risk only, with less regard to the model complexity. Concerning the parameter γ(SV R) of the
radial basis kernel function, it defines the influence of a single training example selected by the model as
support vector. With large values of γ(SV R), the area of influence of the support vectors only includes the
support vector itself, and even increasing the C parameter for regularization, the over-fitting problem is
more probable. On the contrary, when γ(SV R) is very small the model cannot “capture” the complexity
of the data at hand, behaving similarly to a linear model. Summarizing, the optimal parameters
combination is not trivial, and it cannot be a-priori identified. In order to practically understand the
impact of the calibration on the final performance of the learning method, the a-posteriori analysis of the
mean relative error ⟨ε⟩ has been performed. Fig. 3 shows the behavior of ⟨ε⟩ changing the combination
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of parameters in the wide range 0 ≤ log2(C
(SV R)) ≤ 14 and −10 ≤ log2(γ

(SV R)) ≤ 2. The obtained
performances satisfy the AEEG boundary ⟨ε⟩th = 10 [%] for a high number of parameter combinations

and in particular with intermediate values of γ(SV R), where less sensitivity to the variations of C(SV R)

is pointed out. It can be observed that a diagonal region with smaller errors exists, and the minimum
error is obtained with C(SV R) = 26 = 64 and γ(SV R) = 2−4 = 6.25× 10−2 (Fig. 3).
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3.3. Weather Forecasts Down-Scaling

The results of the experiment described in Section 3.1 pointed out good performance in the estimation of
the output PV power when the measurement of the module temperature τ (mod)(t) and POA irradiance

ι(POA)(t) are available. In this section, the first step of the proposed learning strategy, which is aimed
at the weather forecasts down-scaling, is validated. The capability to correctly estimate the operators

Υ̃τ and Υ̃ι has been verified considering the experimental data of the 4-week measurement campaign
described in Section 3.1, together with the air temperature τ (air)(t) and solar irradiance ι(sun)(t) given
by the commercial weather forecast service, which provides a maximum spatial resolution of 1.5 [km2]

and a forecast prediction time ∆t(pred) = 24 [h]. It has to be clarified that the training input-output
pairs have been synchronized in time in order to have temporal match between the weather forecasted
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values (input) and the local measurements on the plant (output). The SVR functions have been trained
using the optimal parameter set described in Section 3.2.

The validation has been performed with a test set collected during the week after the training period,
in order to downscale unknown weather forecast. The estimated module temperature τ̃ (mod)(t) and POA

irradiance ι̃(POA)(t) of a representative day are reported in Fig. 4(a) and Fig. 4(b), respectively. The
comparisons point out a good reconstruction of both the temperature and irradiance during the whole
considered day, with mean relative errors ετ = 7.33 [◦C] and ει = 35.61 [W/m2]. As can be noticed,
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a time delay exists between the measured and estimated module temperatures due to the common
misalignment of the weather forecasts. However, the similarity between the two patterns points out the
feasibility of the down-scaling process.

3.4. Power Prediction with Standard Weather Forecasts

The validation reported in this section is aimed at assessing the performance of the whole two-step

LBE process. The operators Υ̃τ , Υ̃ι, and Φ̃ have been trained according to the experiments described
in the previous sections, and successively tested with the available regional weather forecast. More
in detail, the forecasted solar irradiance ι(sun)(t + ∆t(pred)) and air temperature τ (air)(t + ∆t(pred)),

with ∆t(pred) = 24 [h], have been acquired during (i) three cloudy/rainy days characterized by unstable
forecasts, and during (ii) three sunny days.

The results of the first cloudy/rainy test case are reported in Fig. 5(a), and the corresponding
relative error ⟨ε⟩ is shown in Fig. 5(b). The prediction retrieved by the proposed approach shows
inaccuracies mainly related to the unreliable weather forecasts. As an example, during the second day
of the considered test period, the method underestimated in the morning and overestimated in the
afternoon the output power with relative error ⟨ε⟩ > 30 [%] [Fig. 5(b)]. Fig. 6 points out the inaccuracy
of the weather down-scaling during the second test day, which is the main cause of the inaccurate power
prediction. For instance, in the early afternoon the POA irradiance [Fig. 6(b)] has been forecasted

with values lower than the measured one (ει = 132.45 [W/m2]), while the module temperature has been
overestimated [Fig. 6(a)].

The second test case points out the performance of the proposed method when dealing with a stable
sunny period. The measured and predicted output powers and the relative error are shown in Fig. 7(a)
and Fig. 7(b), respectively. As a matter of fact, the proposed approach provided a satisfactory energy
forecast except for three short-term error peaks with maximum value maxn{⟨ε⟩n} = 15.25 [%], which
exceeded the AEEG threshold ⟨ε⟩th = 10 [%]. As can be noticed, the prediction performance degrades
in the morning and in the evening when the weather forecasts are less accurate [23]. However, the
obtained error metrics pointed out satisfying values of mean absolute error ε = 61.85 [kW] and mean
relative error ⟨ε⟩ = 3.72 [%].
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Figure 8. Long-term output power prediction with training and test sets from different seasons. (a)
Predicted vs measured output power and (b) relative error ⟨ε⟩.
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3.5. Long-Term Output Power Forecasting

The last experiment is aimed at testing the prediction capabilities using long-term training and testing
data acquired in different seasons. In particular, M = 1273 training samples have been acquired during
the winter period (i.e., January, February, and March), while the spring weather forecasts of April, May,
and June have been considered for the test set (N = 1376 — Table 1). The two-step LBE strategy
has been applied using the SVR parameters calibrated in Section 3.2, and the results of the prediction
are shown in Fig. 8. As expected, the relative error reported [Fig. 8(b)] points out higher prediction
inaccuracies at the end of the test, when the weather conditions are very different with respect to the
winter season. However, only 4.65 [%] of the test samples presented a relative error ⟨ε⟩ > 10 [%].

4. CONCLUSION

In this paper, an innovative two-step LBE strategy has been proposed to predict the daily output power
profile of a PV plant. The first step is devoted to the SVR-based prediction of the POA irradiance
and the module temperature starting from the available weather forecasts. Successively, the obtained
down-scaled weather parameters are exploited as input of the second-step SVR for the estimation of
the next-day output power profile. The proposed method has demonstrated the following capabilities:

• The estimation of the output power profile (with mean relative error ⟨ε⟩ < 10%) when the local
measurement of the POA irradiance and module temperature are known. This outcome pointed
out that the SVR is a suitable methodology to learn the relation between the weather-related PV
features and the output power.

• The prediction of the output power profile when the forecasted solar irradiance and air temperature
are used as input data. As expected, the experimental validation of the prediction performance has
pointed out a strict relation with the quality of the weather forecasts.

The proposed ML approach has shown satisfactory performance also dealing with the long-term
prediction of the PV output power with training samples acquired in different seasons. The experimental
validation has pointed out that the main limitations are related to the quality of the weather forecast.
Future studies will be focused on (a) the integration of additional weather indicators, such as the wind
speed and direction, as features of the LBE -based strategy, (b) the exploitation of heterogeneous data
fusion models, leveraging on the spreading of environmental wireless sensors based on the Internet
of Things paradigm, as well as (c) the introduction of progressive/reinforcement learning strategies
to dynamically update the training data set and self-adapt the learning method according to the
measurement data.
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