Vol. 123
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-08-22
Mutual Impedance Computation of a Waveguide Slot-Fed Arbitrary Patch Using Combined Conventional Moment Method and Equivalent Electric and Magnetic Dipole Method
By
Progress In Electromagnetics Research C, Vol. 123, 61-73, 2022
Abstract
This paper proposes computing the mutual impedance of a multi-layer patch fed by a slotted waveguide using the combined equivalent electric and magnetic dipole-moment method and conventional moment method (EDM-MOM) as an efficient technique. The slot, PEC, and dielectric regions are substituted with equivalent currents. The unknown currents are expanded using the Rao-Wilton-Glisson and Schaubert-Wilton-Glisson basis functions. The matrix equations are then extracted from the boundary conditions. Using the EDM, each RWG or SWG of the PEC and dielectric is equivalent to an infinitesimal electric dipole, and that of the slot is equivalent to a magnetic dipole. The element matrix related to the waveguide excitation is calculated using the conventional moment method due to simple integration and accuracy. Further, the superposition of the mutual coupling between each equivalent electric or magnetic dipole in the first element and each dipole in the second element is used to obtain the mutual impedance of the two elements of the waveguide slot-fed patch array. The proposed method shows good agreement with CST software simulation results.
Citation
Mehri Hosseini, Keyvan Forooraghi, and Ali Abdolali, "Mutual Impedance Computation of a Waveguide Slot-Fed Arbitrary Patch Using Combined Conventional Moment Method and Equivalent Electric and Magnetic Dipole Method," Progress In Electromagnetics Research C, Vol. 123, 61-73, 2022.
doi:10.2528/PIERC22042805
References

1. Ho, M. H., K. A. Michalski, and K. Chang, "Waveguide excited microstrip patch antenna-theory and experiment," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 8, 1114-1125, 1994.

2. Ho, M.-H. and C.-I. G. Hsu, "Circular-waveguide-fed microstrip patch antennas," Electron. Lett., Vol. 41, 1202, 2005.

3. Wu, W., J. Yin, and N. Yuan, "Design of an efficient X-band waveguide-fed microstrip patch array," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 7, 1933-1939, 2007.

4. Hwang, J. and Y. Oh, "Millimeter-wave waveguide slot-array antenna covered by a dielectric slab and arrayed patches," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1050-1053, 2009.

5. Elliott, R. S., Antenna Theory and Design, Prentice-Hall, Englewood Cliffs, NJ, 1981.

6. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, 1968.

7. Pan, S. G. and I. Wolff, "Computation of mutual coupling between slot-coupled microstrip patches in a finite array," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 90, 1047-1053, 1992.

8. Fang, D. G., C. Z. Luan, and Y. P. Xi, "Mutual coupling in microstrip antenna array: Evaluation, reduction, correction or compensation," IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, 37-40, 2005.

9. Ozdemir, N. A. and J. F. Lee, "IE-FFT algorithm for a non conformal volume integral equation for electromagnetic scattering from dielectric objects," IEEE Transactions on Magnetics, Vol. 44, 1398-1401, 2008.

10. Guo, J. L., J. Y. Li, and Q. Z. Liu, "Analysis of arbitrarily shaped dielectric radomes using adaptive integral method based on volume integral equation," IEEE Transactions on Antennas and Propagation, Vol. 54, 1910-1916, 2006.

11. Nie, X. C., L. W. Li, N. Yuan, T. S. Yeo, and Y. B. Gan, "A fast volume-surface integral equation solver for scattering from composite conducting-dielectric objects," IEEE Transactions on Antennas and Propagation, Vol. 53, 818-824, 2005.

12. Nie, X. C., L. W. Li, N. Yuan, T. S. Yeo, and Y. B. Gan, "Precorrected-FFT solution of the volume integral equation for 3-D inhomogeneous dielectric objects," IEEE Transactions on Antennas and Propagation, Vol. 53, 313-320, 2005.

13. Liu, Y., S. Safavi-Naeini, S. K. Chaudhuri, and R. Sabry, "On the determination of resonant modes of dielectric objects using surface integral equations," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 4, 1062-1069, 2004.

14. Glisson, A. W., D. Kajefez, and J. James, "Evaluation of modes in dielectric resonators using a surface integral equation formulation," IEEE Trans. Microwave Theory Tech., Vol. 31, No. 12, 1023-1029, 1983.

15. Rao, S. M., T. K. Sarkar, P. Midya, and A. R. Djordevic, "Electromagnetic radiation and scattering from finite conducting and dielectric structures: Surface/surface formulation," IEEE Transactions on Antennas and Propagation, Vol. 39, 1034-1037, 1991.

16. Liu, Y., S. Safavi-Naeini, and S. K. Chaudhuri, "Comparison of SIE-MoM and VIE-MoM for determination of complex resonant frequency of dielectric resonators," IEEE Antennas Propag. Int. Symp., 641-644, Columbus, Ohio, June 2003.

17. Lu, C. C. and W. C. Chew, "A coupled surface-volume integral equation approach for the calculation of electromagnetic scattering from composite metallic and material targets," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 12, 1866-1868, 2000.

18. Yucel, A. C., L. J. Gomez, and E. Michielssen, "Internally combined volume-surface integral equation for EM analysis of inhomogeneous negative permittivity plasma scatterers," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 4, 1903-1913, 2018.

19. Gomez, L. J., A. C. Yücel, and E. Michielssen, "Internally combined volume-surface integral equation for a 3-D electromagnetic scattering analysis of high-contrast media," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1691-1694, 2017.

20. Gomez, L. J., A. C. Yücel, and E. Michielssen, "Low-frequency stable internally combined volume-surface integral equation for high-contrast scatterers," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1423-1426, 2015.

21. Makarov, S., "MoM antenna simulation, with Matlab: RWG basis function," IEEE Antennas and Propagation Magazin, Vol. 43, No. 5, 100-107, October 2001.

22. Makarov, S. N., S. D. Kulkarni, A. G. Marut, and L. C. Kempel, "Method of moments solution for a printed patch/slot antenna on a thin finite dielectric substrate using the volume Integral equation," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 4, 1174-1184, 2006.

23. Bertrand, M., G. Valerio, M. Ettorre, and M. Casaletti, "RWG basis functions for accurate modeling of substrate integrated waveguide slot-based antennas," IEEE Transactions on Magnetics, Vol. 56, No. 1, 1-4, Art. No. 6700204, January 2020.

24. Yuan, N., T. S. Yeo, X.-Ch. Nie, Y. Gan, and L. Li, "Analysis of probe-fed conformal microstrip antennas on finite grounded substrate," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, 554-563, 2006.

25. Rius, J. M., E. Ubeda, and J. Parron, "On the testing of the magnetic field integral equation with RWG basis functions in method of moments," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 11, 1550-1553, 2001.

26. Sood, K. K., R. Jyoti, S. B. Sharma, and , "A waveguide shunt slot-fed microstrip patch antenna --- Analysis using the Method-of-Moments," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 11, 5385-5394, 2013.

27. Mikki, S. M. and A. A. Kishk, "Theory and applications of infinitesimal dipole models for computational electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 5, 1325-1337, 2007.

28. Sijher, T. and A. Kishk, "Antenna modeling by infinitesimal dipoles using genetic algorithms," Progress In Electromagnetics Research, Vol. 52, 225-254, 2005.

29. Liu, X., W. Cai, H. Guo, and H. Yin, "The application of the equivalent dipole-moment method to electromagnetic scattering of 3D objects," Asia-Pacific Microwave Conference Proceedings, 3, 2005.

30. Yu, C., J. Yuan, and C. Gu, "Equivalent dipole-moment method for electromagnetic scattering by dielectric bodies," 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 924-927, 2009.

31. Schaubert, D. H., D. R. Wilton, and A. W. Glisson, "A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 1, 77-85, 1984.

32. Yuan, J., C. Gu, and G. Han, "Efficient generation of method of moments matrices using equivalent dipole-moment method," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 716-719, 2009.

33. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 409-418, 1982.

34. Lyon, R. W. and A. J. Sangster, "Efficient moment method analysis of radiating slots in a thick-walled rectangular waveguide," Proc. Inst. Elect. Eng., Vol. 128, No. 4, 197-205, 1981.

35. Cowper, G. R., "Gaussian quadrature formulas for triangles," In. J. Numer. Meth. Eng., 405-408, 1973.

36. Jiade, Y., "A hybrid equivalent dipole moment and adaptive modified characteristic basis function method for electromagnetic scattering by multilayered dielectric bodies," International Journal of RF and Microwave Computer-aided Engineering, Vol. 19, 685-691, 2009.

37. Makarov, S. M., Antenna and EM Modeling with Matlab, 2002.

38. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd Ed., 310-314, 2012.

39. Richmond, J. H., "A reaction theorem and its applications to antenna impedance calculations," IRE Trans. Antennas Propag., Vol. 6, No. 9, 515-520, 1961.

40. Mikki, S. M. and A. A. Kishk, "Theory and applications of infinitesimal dipole models for computational electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 5, 1325-1337, 2007.

41. Karimkash, S., A. Kish, and G. Zhang, "Modelling of aperiodic array antennas using infinitesimal dipoles," IET Micro. Antennas Propag., Vol. 6, No. 7, 761-767, 2012.

42. Jinyun, Y., "Symmetric Gaussian quadrature formulae for tetrahedronal regions," Comput. Meths. Appl. Mech. Engrg., Vol. 43, 349-353, 1984.

43. Gilbson, W., The Method of Moments in Electromagnetic, 168-175, Chapman&Hall/CRC, Boca Raton, FL, 2008.

44. Yuan, J. and K. Su, "Electromagnetic radiation from arbitrarily shaped microstrip antenna using the equivalent dipole-moment method," International Journal of Antennas and Propagation, Vol. 2012, Article ID 181235, 5 pages, 2012.