
Progress In Electromagnetics Research C, Vol. 123, 61–73, 2022

Mutual Impedance Computation of a Waveguide Slot-Fed Arbitrary
Patch Using Combined Conventional Moment Method and

Equivalent Electric and Magnetic Dipole Method

Mehri Hoseini1, Keyvan Forooraghi1, *, and Ali Abdolali2

Abstract—This paper proposes computing the mutual impedance of a multi-layer patch fed by a
slotted waveguide using the combined equivalent electric and magnetic dipole-moment method and
conventional moment method (EDM-MOM) as an efficient technique. The slot, PEC, and dielectric
regions are substituted with equivalent currents. The unknown currents are expanded using the Rao-
Wilton-Glisson and Schaubert-Wilton-Glisson basis functions. The matrix equations are then extracted
from the boundary conditions. Using the EDM, each RWG or SWG of the PEC and dielectric is
equivalent to an infinitesimal electric dipole, and that of the slot is equivalent to a magnetic dipole.
The element matrix related to the waveguide excitation is calculated using the conventional moment
method due to simple integration and accuracy. Further, the superposition of the mutual coupling
between each equivalent electric or magnetic dipole in the first element and each dipole in the second
element is used to obtain the mutual impedance of the two elements of the waveguide slot-fed patch
array. The proposed method shows good agreement with CST software simulation results.

1. INTRODUCTION

Patch arrays are attractive structures because of their compact size and low cost and have found
applications in radar and satellite communication systems and phased array antenna. However, they
show low gains at high frequencies. Combining patch arrays with a slotted waveguide can resolve
the issue [1–4]. An accurate array design requires considering the mutual coupling between array
components. In designing waveguide slot arrays via the Elliot method, analytical expressions are used
to calculate the coupling impedance [5].

The method of moments is a common analysis method for the arbitrary shape patch antenna [6].
In the case of patch arrays, integral equations are obtained for unknown surface currents by applying
boundary conditions [7, 8]. The equations are solved using the method of moments in the frequency
domain, and the mutual impedance is determined accordingly. The volume integral equation (VIE)
analyzes dielectric structures with inhomogeneous materials [9–12]. Due to the heavy computations
required to solve VIEs, surface integral equations are also proposed for these structures [13–15]. In
previous research [16], a comparison was performed between the results obtained by surface and volume
integral equations in analyzing dielectric resonators. Combined surface-volume integral equations are
employed to take advantage of inhomogeneous dielectrics analysis via volume integrals and reduce the
computations of surface integrals [17–20]. In this paper, we have also formulated the combined surface-
volume integral equations.

Method of moments with Schaubert-Wilton-Glisson (RWG) and Schaubert-Wilton-Glisson (SWG)
basis functions has been studied in structures such as slots, patch antennas, and substrate-integrated
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waveguides (SIWs) in [21–23]. These basis functions efficiently analyze patch antennas with arbitrary
configurations such as conformal patch antennas [24]. Probe feed is often proposed in such structures,
and the equivalent source is electrical. The integral equations in analyzing the structures with magnetic
sources are demonstrated in [25]. A rectangular patch coupled with the slotted waveguide was analyzed
using the method of moments with sine basis functions in [26]. For the first time, the analysis of an
arbitrary patch fed by a slotted waveguide based on RWG and SWG basis functions is investigated in
this paper. In the current paper, we have combined field integral equations (CFIEs) because, at the
slot position, the magnetic field integral equation (MFIE) is applied due to the magnetic boundary
condition. Moreover, electric field integral equations (EFIEs) are applied in the remaining part of the
PEC and dielectrics.

Modeling the antenna with equivalent dipoles is a straightforward technique for reducing the
computations in analyzing the antenna [27–30]. In this paper, we have used the equivalent dipole
method to simplify the calculation of the moment matrix elements. Also, the matrix terms of the
equivalent dipole method are obtained for a waveguide slot-fed patch antenna. As the second innovation,
the analysis based on the combined method of moments with RWG and SWG basis functions and the
equivalent dipole method is employed. Therefore, unlike the previous methods, the matrix elements are
computed based on a combination method of the equivalent dipole method and a conventional moment
method. In the proposed method, to calculate the matrix element related to excitation, the moment
method is used to reduce the error. Meanwhile, the equivalent dipole method is used to calculate other
matrix elements because of its simplicity and speed. Accordingly, less memory and simpler calculations
are required than in the moment method alone, and higher accuracy is obtained than in the equivalent
dipole method alone. The superposition of the fields in the dipoles of the first element and all dipoles
in the second element is employed to calculate the mutual coupling.

The first objective of this paper is to analyze the coupling of the arbitrary patch coupled with
a slotted waveguide. The reason for following this aim is the importance of calculating coupling in
the design of arrays. Therefore, in this paper, the boundary condition equations of the arbitrary patch
coupled with the slot are obtained, and the matrix of the moment method is formed using the expansion
of currents with the RWG and SWG basis functions. Regarding the antenna’s relatively large size, the
matrix element relationships for the equivalent dipole method are obtained to reduce the computational
memory. The second purpose of this paper is to minimize the error due to the approximation of
waveguide excitation with equivalent dipoles. For this purpose, matrix elements related to waveguide
excitation are calculated without approximation with equivalent dipoles. This term is computed by
using the conventional moment method, which has less error than the equivalent dipole method. Since
the equivalent dipole method is an approximation of the moment method, the error of the combined
moment method-equivalent dipole is expected to be lowered than the equivalent dipole method alone.
The results of this paper have confirmed the prediction.

The paper’s organization is as follows. In Section 2, we provide the formulation for the moment
method. In addition, electric and magnetic currents are expanded via RWG and SWG basis functions,
and the derived boundary condition equations are arranged into a matrix form. Section 3 focuses on
applying the equivalent dipole method. The mutual impedance calculation between the two elements
of an array of the waveguide slot-fed is described in Section 4. Section 5 discusses the results and
compares them with CST software simulation results. Finally, Section 6 summarizes the main findings
of the paper.

2. FORMULATION

This section uses the moment method to analyze the waveguide slot-fed arbitrary patch antenna. For
this purpose, the boundary condition equations are written in slots, dielectrics, and patches based on
the moment method. Therefore, the equivalent surface electric currents in the patches, the equivalent
volumetric electric currents in the dielectrics, and the equivalent magnetic current of the slots are
expanded with the RWG and SWG basis functions. The expanded currents are substituted in the
boundary condition equations. Then, the equations are written in matrix form by dot product to the
corresponding test functions, which are the RWG and SWG basis functions. The equivalent dipole
method can reduce the complexity of the matrix calculations. This method calculates the moment of
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equivalent dipoles of RWG and SWG elements. In expressions related to matrix elements, instead of
using the free space Green function (according to the conventional moment method), matrix elements
are calculated using infinitesimal dipole field equations. The equivalent dipole method formulation for a
patch coupled with a slotted waveguide is one of the novelties of this paper. In addition, a combination
of the moment method and the equivalent dipole method is proposed to reduce the error compared to the
equivalent dipole method. In other words, the matrix element related to excitation is obtained without
equivalent dipole approximation and by integrating the relationships of waveguide excitation fields. The
difference between the proposed method and the equivalent dipole method is that the latter employs a
field of an infinitesimal equivalent dipole as an approximation instead of using the Green function inside
the waveguide. In this work, the matrix elements related to the Green function inside the waveguide are
calculated using the usual moment method. The other elements of the matrix, which are calculated from
the free space Green function in the conventional moment method, are approximated by infinitesimal
dipole fields. The arbitrary waveguide-fed patch is shown in Fig. 1. There is a longitudinal slot. Further,
a multilayer patch antenna exists on top of the slot. The shape of the patch antenna, the number of
dielectric layers, and their characteristic parameters are arbitrary.

(a) (b)

Figure 1. Geometry of the arbitrary waveguide-fed patch. (a) Waveguide slot-fed patch antenna. (b)
Constituent layers.

2.1. Boundary Conditions

It is unnecessary to write the boundary equations separately in each dielectric [31]. Thus Eq. (1) is
written for all dielectric regions (εd is variable). Moreover, Eq. (2) is correct for the PEC surface

everywhere in the antenna. Regarding the notations of currents, J⃗p is used for the surface equivalent

current densities in the perfect electric conductor (PEC) (patches and waveguide walls). In addition, J⃗d
denotes the volume equivalent current densities in the first and second dielectric mediums, and Ms is the

equivalent magnetic current in the slot. Additionally, D⃗ indicates the electric flux density in dielectric

mediums and is an unknown parameter. E⃗s
p(U⃗) and E⃗s

d(U⃗) refer to the induced electric field on PEC

and dielectric due to the source U⃗ , respectively, where U⃗ ∈ {J⃗p, J⃗d,Ms}. Concerning the magnetic fields

inside the slot, Hs
Ms

(U⃗) denotes the induced magnetic field due to source current U⃗ , and H inc represents
the incident magnetic field. εd is the dielectric permittivity.
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2.2. Expansion of Electric and Magnetic Currents

The dielectric medium and PEC are discretized into tetrahedral volume and triangle surface elements,
respectively. Next, the volume/surface equivalent current densities are expanded over the PEC,

dielectric, and slot. Eq. (4) demonstrates the relation between D⃗ and J⃗d. The RWG basis function is
suitable for the surface current. Moreover, in the case of volume equivalent currents, the SWG basis
function is used as follows [32]:

D⃗ (r⃗) =

ND∑
n=1

DD
n f⃗v

n(r⃗), J⃗d (r⃗) = jωK (r⃗) D⃗ (r⃗) , K (r⃗) =
ε̂(r⃗)− εo

ε̂(r⃗)
(4)

J⃗p (r⃗) =

Nv∑
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Ipnf⃗
p
n(r⃗) (5)

M⃗s =
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V Ms
m f⃗Ms

m (r⃗) (6)

where f⃗p
n and f⃗Ms

m are the RWG basis functions for the equivalent surface electric and magnetic currents

in the PEC and slot, respectively, and f⃗v
n denotes the SWG basis function for the equivalent volume

electric currents in dielectric mediums. The details of these basis functions can be found in previous
studies [31, 33]. In addition, ε̂(r⃗) is the relative dielectric permittivity in two dielectrics, and ε0 represents
the electric permittivity in the free space.

2.3. Matrix Equations

Using the dot products of the expanded currents in Eqs. (1) to (3) to their corresponding basis functions,
these equations are rewritten in a matrix form, and the relation is expressed for each matrix element.
Concerning Eqs. (1) to (3) and the detailed derivation of the matrix elements in [32], we have: ZDD ZPD CMsD
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2.4. Integral Computations inside the Waveguide

In matrix Eq. (7), Ii = ⟨f⃗Ms
m ,H inc⟩, and H inc is obtained from the Green’s function of the fields inside

a slotted waveguide. In a waveguide with the dominant mode TE10, the field equations are as in [34].
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According to RWG basis function definition (f⃗Ms
m ) [33], we can write
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âx

]
e−jβgzdxdz

+ϕ

−∫
Tn

Ln

2A−
n

(
r⃗ − r⃗−n

) [π
a

(
e

jπx
a + e−

jπx
a

2

)
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Given that
∫
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jπ )
2[ jπa xe

jπx
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jπx
a ], these integrals can be computed using the numerical

Gaussian quadrature integration for triangles [35].

3. METHOD OF EQUIVALENT DIPOLES

The element matrix Ii in Eq. (7) is related to the waveguide excitation calculated in Section 2.4 due
to simple integration and accuracy without needing the equivalent dipole method. This section applies
the equivalent dipole method for the other elements to reduce the problem complexity and computation
time due to double integration.

3.1. Deriving of Equivalent Dipole-Moments

On a PEC surface, the equivalent electric dipole moment corresponding to the nth element of RWG
(denoted by mes in this paper) can be obtained by integrating its surface current over the surface of
that element according to [32]. The nth dipole-moment of SWG (denoted by mev) is also obtained by
integrating the volume current over the volume of that element [32, 36]. The equivalent magnetic dipole
moment is obtained as follows:

mhs =

∫
T+
n +T−

n

Msn

(
r′
)
ds′=Isnmhsn (19)

mhsn ≈ lhn
(
rc−n −rc+n

)
(20)
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3.2. The Electric and Magnetic Fields of Equivalent Dipoles

The electric and magnetic fields of the mth infinitesimal electric dipole are expressed in [37]. According
to the duality theorem [38], the fields of the equivalent infinitesimal magnetic dipoles within the slot
are obtained by:

Ehn (r) = − jk

4π
(mhn × r)Ce−jkr, C =

1
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[
1 +

1
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]
(21)
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r
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+ 2MhnC

)
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(r ·mhn) r

r2
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where mhn denotes the magnetic dipole moment. These equations are accurate; they are valid for near
and far-field estimations.

3.3. Calculation of Matrix Elements Using Equivalent Dipole Fields

To reduce the complexity in Eqs. (8) to (16) and according to equations in [32], the scattered field of
the nth element of RWG and SWG is substituted with the field of the equivalent dipole in the following
equations, where indices “en” and “hn” are for electric dipole and magnetic dipole fields, respectively.
Additionally, the “h” index (lhm) differentiates the common edge length of magnetic currents.
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4. COMPUTATION OF THE MUTUAL IMPEDANCE

It is assumed that the electric and magnetic currents, (J1, K1) and (J2, K2), produce electromagnetic
fields (E1, H1) and (E2, H2) in patches 1 and 2, respectively. According to the reaction theorem in [39],
the mutual impedance due to the currents of antenna 1 in antenna 2 is obtained via

Z21 = − 1

I11I ′22

∫
V2

(J2 · E1 −K2 ·H1)dv (27)

As noted in [40], we can obtain the electric and magnetic currents in a dipole array via

J2
(
r, r′

)
=

Nd∑
n=1

Jnδ(r − r′n), K2

(
r, r′

)
=

Nh∑
n=1

Mnδ(r − r′n) (28)

where Jn is the nth electric dipole, and Mn denotes the nth magnetic dipole. Nd is the total number of
equivalent electric dipoles, andNh is the total number of equivalent magnetic dipoles. According to these
equations, the following expressions can be written for an array of magnetic and electric dipoles [41]:

Zij=
1

IiIj

Ndj∑
n=1

Ed
i (r

′
n)·Jn

j − 1

IiIj

Nhj∑
n=1

Hd
i (r

′
n)·Mn

j (29)

where Ed
i (r

′
n) and Hd

i (r
′
n) are electric and magnetic fields due to all the electric dipoles of the ith cell

of the array at position r′n, respectively. Moreover, Jn
j and Mn

j represent the dipole-moment of the
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nth array element of the jth cell array. Based on the superposition theorem, the mutual impedance
between the two cells i and j equals the sum of the mutual impedance due to each dipole in cells i and
j. Substituting the total field of all dipoles in Eq. (29), we have:

Zij =
1

IiIj

Ndj∑
n=1

Ni∑
m=1

Edm
i (r′n) · Jn

j − 1

IiIj

Nhj∑
n=1

Ni∑
m=1

Hdm
i (r′n) ·Mn

j (30)

where Ni is the total number of dipoles in element i of the array, r′n = rc+n +rc−n
2 (rc+n , and rc−n is the

distance between the centroid of the triangles constituting the nth edge element and the origin).

5. RESULTS

As mentioned earlier, the patch shape and dielectric layers could be arbitrary. The waveguide slot-fed
patch is demonstrated in Fig. 2. The waveguide dimensions are 22.86mm and 10.16mm (WR90 type).
There is a longitudinal slot with a width of 1.58mm. On top of the slot, there is a dielectric medium
with a relative permittivity εr = 2.64, which is commercially available in substrate Rogers RO4725JXR.
The cross-sectional dimensions are 11mm× 33mm, and the height of h1 is 2.62mm. On this layer, the
first patch composed of the same square pixel patches with the size of 1.1mm is illustrated in Fig. 2(a).
A dielectric medium (FR4) with the size of 11mm × 33mm and a height of 1.36mm is laid above the

x 

y

z

(a) (b) (c)

(d) (e)

Figure 2. Geometry of the waveguide-fed patch. (a) Patch antenna. (b) Waveguide slot-fed patch
antenna. (c) Constituent layers. (d) Top view. (e) 3D view.
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patch. Finally, another identical patch is placed on the dielectric medium (FR4). Xs is the offset of the
slot center from the waveguide axis, and the patch offset with respect to the slot is zero in this paper.
a + 2wg is the dimension of the square ground of the patch on top of the waveguide. lsot (slot length)
is equal to 16.96mm for resonance in the frequency of 9.5GHz, and wslot (slot width) equals 1.58mm
in all cases. The position of the patch relative to the slot is constant in all cases. The patch and slot
centers are in the same place. In other words, no matter how much the slot offset changes, the patch
is moved by the same amount. Fig. 2(a) is obtained by connecting components consisting of square
pixels with dimensions of 1.1mm×1.1mm at the resonant frequency of 9.5GHz using genetic algorithm
optimization. In this procedure, the algorithm examines the different states of the presence or absence
of pixels. The optimization variables are the number of pixels and each pixel’s presence or absence (0
and 1). Also, the objective function is the resonance at the desired frequency.

In the present paper, the structure of Fig. 3 is suggested for calculating the mutual impedance of
the two elements by using CST software (time domain solver) to validate the results. As shown, there
is a PEC box between the two waveguides. The distance between each slot and the feed point is λg/2.
Additionally, the distance between each slot and the short circuit is λg/4. The PEC box in the middle
is used to adjust the distance between the two slots and compute the coupling variations due to slot
dislocations.

 

Figure 3. The model used to obtain mutual impedance of proposed elements.

Figures 4, 5, and 6 show the mutual impedance when the two slots have the same length for offsets
1–4mm and collinear, parallel, and parallel displaced situations for the two elements (the left side of
the figures). For each offset, the results are obtained for the associated resonant length of that slot.
According to the data, increasing the offset leads to coupling enhancements.

The distance between one peak and the next peak in real and imaginary diagrams of the mutual
impedance is about λ. As expected, at intervals where the maximum or minimum of the real part occurs,
the imaginary part curve becomes 0. Regarding offsets smaller than 1mm, the coupling is small. Thus,
we can ignore coupling in the design of arrays with a small offset. However, the amount of coupling
cannot be ignored in large offsets. In the linear case, the slots form an H-plane array; the coupling
rapidly decreases by increasing the distance. Each λ increase in distance in a linear slot causes the real
and imaginary parts of the coupling impedance to be almost halved. Therefore, in the design of large
arrays, the coupling of elements far from each other can be ignored. In contrast, for the parallel case,
we have an E-plane array; thus, decreasing coupling due to increasing the distance happens at a slower
rate. In parallel slots, by increasing the distance as much as λ, the real and imaginary parts of the
coupling impedance decreases less than that in the linear case. This result indicates that in the linear
case, the coupling depends more on the distance of the slots. For instance, let us consider a linear array
with 20 elements with equal distances of 0.5λ and assume the same offset of 2mm for all elements.
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(a) (b)

Figure 4. (a) Real and (b) Imaginary part of coupling impedance for two collinear slots.

(a) (b)

Figure 5. (a) Real and (b) Imaginary part of coupling impedance for two Parallel slots.

(a) (b)

Figure 6. (a) Real and (b) Imaginary part of coupling impedance for two parallel displaced slots.

According to the red diagram of Figure 4(a), the coupling of the first element with other elements can
be calculated by ignoring the coupling of the first element with the eighth element onwards (elements
8 to 20) (that are spaced more than 4λ).
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Table 1. Comparison of this work to conventional methods.

CST MOM EDM This work (EDM-MOM)

Time (s) 2902 1146 478 633

CPU (Mb) 744 1647 364 423

Accuracy (%) 3.08 3.36 1.87

Table 1 compares the proposed combined conventional moment method and EDM (EDM-MOM)
and the previous methods. We have investigated 50 random samples of the variables of element spacing,
how the two elements are juxtaposed (i.e., linear, parallel, and parallel displaced), and their offsets. The
error is defined as follows:

Error =

(
1

N

N∑
n=1

∣∣∣∣(ZEDM-MOM − ZMOM

ZMOM

)∣∣∣∣
)

× 100% (31)

In this equation, N is the number of samples of the moment method compared with the proposed EDM-
MOM method, ZEDM-MOM the mutual impedance calculated from the proposed method, and ZMOM the
mutual impedance calculated from the MOM method. The average error of these 50 random samples is
considered in the error calculation. The total number of elements in CST is 167,832 (two collinear slots,
Z = 0.5λ). In the moment method, the number of triangles is 1658, and the number of tetrahedrons
is 5916. The element matrix details for the conventional moment method are derived according to
equations in [25]. The integrals are calculated according to Gaussian quadrature formulas in [42] and
in singular cases, based on the method in [43]. The accuracy is calculated assuming MOM data as the
reference. The recommendation for validation is to make a simulation using a method from a different
family. The conventional moment method, the equivalent dipole, and the proposed combined methods
are all based on the equivalent currents. Therefore, the CST software results (time-domain solver) are
used for validation. But simulation with CST is time-consuming, especially in large arrays. So it is
not recommended in the design process of the arrays, and we have used it here only to validate the
proposed method. We aim to obtain a method based on the moment method, which gives values closer
to the moment method than the equivalent dipole method. Therefore, the reference is classical MoM. A
processor with a 2.50GHz CPU speed is used in all cases. Based on the results, the proposed method’s
computation time and required memory are much better than the conventional moment method and
CST software results, and better accuracy with little extra time and memory is obtained than EDM.

A comparison of the proposed method with similar previous works is presented in Table 2.
According to Table 2, this method’s most important advantage is improving the maximum
computational error while maintaining simplicity and relatively short time of computations.

Table 2. Comparison of this work to references.

System RAM
Computation

time (s)

Number of

Elements

Maximum

Error
Method

No

Information
low 261 3163 5% EDM [44]

Intel-Core i7-

CPU at 3.40GHz

with 32GB of RAM

High

(20GHz)
1680

No

Information

No

Information
MOM [23]

Intel-Core i7-

CPU at 2.5GHz

with 8GB RAM

Low

(423Mb)
633 7574 1.9%

This work

(EDM-MOM)
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6. CONCLUSION

In this paper, combined conventional moment method and equivalent dipole-moment method were
applied to compute the mutual impedance of the two elements of the waveguide slot-fed arbitrary patch
antenna arrays. According to the surface and volume equivalence theorem, dielectrics and patches were
substituted with the corresponding volume and surface equivalent currents. In addition, a magnetic
current modeled the slot. The boundary conditions for PEC, dielectrics, and slots were obtained, and
then unknown currents were expanded via RWG and SWG basis functions using the moment method.
Next, equivalent electric and magnetic dipole moments for the triangles and tetrahedrons were calculated
to reduce the computing time and complexity. After computing the matrix elements using the fields
of equivalent dipoles and solving the equations, the mutual coupling versus the distance between the
two elements was evaluated for different positions and offsets of the two slots. Comparing the results
obtained by the proposed approach with the simulation results of CST showed that the proposed method
led to less complexity in analysis and computed mutual impedances with sufficient accuracy.
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