Vol. 134
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-07-02
Generation of Spatially-Variant Anisotropic Metamaterials in 3D Volumetric Circuits
By
Progress In Electromagnetics Research C, Vol. 134, 93-102, 2023
Abstract
3D printing is revolutionizing manufacturing and is now being considered in the electronics industry. The creation of the first 3D volumetric circuit (3DVC) has created a way to make circuits smaller, lighter, into unconventional form factors and exploit physics like anisotropy more effectively than planar geometries can. While this is exciting, many problems mustbe solved to make 3DVCs a reality. One of these problems is electromagnetic interference and mutual coupling between components that are expected to be highly problematic in high-frequency 3DVCs. Spatially-variant anisotropic metamaterials (SVAMs) could be a solution to overcome this difficulty, but research in this area is not possible without a way to generate SVAMs around multiple components. In this paper, an algorithm is integrated into CAD software that can generate SVAMs for 3D circuits which will enable future studies of SVAMs.
Citation
Asad U. H. Gulib, Jeremie Dumas, Cesar L. Valle, Edgar Bustamante, Daniele Panozzo, and Raymond C. Rumpf, "Generation of Spatially-Variant Anisotropic Metamaterials in 3D Volumetric Circuits," Progress In Electromagnetics Research C, Vol. 134, 93-102, 2023.
doi:10.2528/PIERC22033005
References

1. Gibson, I., D. W. Rosen, and B. Stucker, Additive Manufacturing Technologies: Rapid Prototyping, Springer, 2010.
doi:10.1007/978-1-4419-1120-9

2. Carranza, G. T., U. Robles, C. L. Valle, J. J. Gutierrez, and A. R. C. Rumpf, "Design and hybrid additive manufacturing of 3-D/volumetric electrical circuits," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 9, 1176-1183, 2016.
doi:10.1109/TCPMT.2019.2892389

3. Rumpf, R. and J. Pazos, "Synthesis of spatially variant lattices," Optics Express, Vol. 20, No. 14, 15263-15274, 2012.
doi:10.1364/OE.20.015263

4. Garcia, C., 3D printed spatially variant anisotropic metamaterials, Ph.D. Dissertation, University of Texas at El Paso, El Paso, 2014.

5. Pazos, J. J., Digitally manufactured spatially variant photonic crystals, Ph.D. Dissertation, University of Texas at El Paso, El Paso, 2014.

6. Berry, E. A., A spatially variant metamaterial design process for transformation electromagnetic devices, Ph.D. Dissertation, University of Texas at El Paso, El Paso, December 2016.

7. Gutierrez, J. J., Independent and simultaneous control of electromagnetic wave properties in self-collimating photonic crystals using spatial variance, Ph.D. Dissertation, University of Texas at El Paso, El Paso, 2020.

8. Rumpf, R. C., C. Garcia, H. Tsang, J. Padilla, and M. Irwin, "Electromagnetic isolation of a microstrip by embedding in a spatially variant anisotropic metamaterial," Progress In Electromagnetics Research, Vol. 142, 243-260, 2013.
doi:10.2528/PIER13070308

9. Rumpf, R. C., J. Pazos, C. R. Garcia, L. Ochoa, and R. Wicker, "3D printed lattices with spatially variant self-collimation," Progress In Electromagnetics Research, Vol. 139, 1-14, 2013.
doi:10.2528/PIER13030507

10. Digaum, J. L., J. J. Pazos, J. Chiles, J. D'Archangel, G. Padilla, A. Tatulian, R. C. Rumpf, S. Fathpour, G. D. Boreman, and A. S. M. Kuebler, "Tight control of light beams in photonic crystals with spatially-variant lattice orientation," Optics Express, Vol. 22, No. 21, 25788-25804, 2014.
doi:10.1364/OE.22.025788

11. Kuebler, S. M., J. L. Digaum, J. Pazos, J. Chiles, G. Padilla, A. Tatulian, R. C. Rumpf, and S. Fathpour, Controlling light using three-dimensional spatially variant self-collimating photonic crystals, Optical Society of America, 2014.

12. Digaum, J. L., R. Sharma, J. J. Pazos, R. C. Rumpf, and S. M. Kuebler, Tight control of light beams in photonic crystals with spatially-variant unit cells, Optical Society of America, 2015.

13. Rumpf, R. C., J. J. Pazos, J. L. Digaum, and S. M. Kuebler, "Spatially-variant periodic structures in electromagnetics," Phil. Trans. R. Soc. A, Vol. 373, 2015.

14. Leonhardt, U. and T. Philbin, Geometry and Light: The Science of Invisibility, Courier Corporation, 2012.

15. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907

16. Gulib, A. U. H., Numerical calculation of spatially variant anisotropic metamaterials, Masters Thesis, University of Texas at El Paso, El Paso, 2016.

17. Community, B. O., Blender-free and open 3D creation software, Blender Foundation, [Online], Available: https://www.blender.org/, [Accessed April 2020].

18. Avila, J. A., C. L. Valle, E. Bustamante, and R. C. Rumpf, "Optimization and characterization of negative uniaxial metamaterials," Progress In Electromagnetics Research C, Vol. 74, 111-121, 2017.
doi:10.2528/PIERC17030906

19. Rumpf, R. C., "Chapter three --- Engineering the dispersion and anisotropy of periodic electromagnetic structures," Solid State Physics, 213-300, 2015.
doi:10.1016/bs.ssp.2015.02.002

20. Rumpf, R. C., Electromagnetic and Photonic Simulation for the Beginner: Finite-Difference Frequency-Domain in MATLAB, Artech House, 2022.

21. Rumpf, R. C., "Simple implementation of arbitrarily shaped total-field/scattered-field regions in finite-difference frequency-domain," Progress In Electromagnetics Research B, Vol. 36, 221-248, 2012.
doi:10.2528/PIERB11092006

22. Berry, E. A., J. Gutierrez, and R. C. Rumpf, "Design and simulation of arbitrarily-shaped transformation optic devices using a simple finite-difference method," Progress In Electromagnetics Research B, Vol. 68, 1-16, 2016.
doi:10.2528/PIERB16012007

23. Gulib, A. U. H., Algorithms for exploration of advanced electromagnetic concepts, Ph.D. Dissertation, University of Texas at El Paso, El Paso, August 2022.

24. Jacobson, A., D. Panozzo, and Others, Libigl --- Simple C++ geometry processing library, [Online], Available: https://libigl.github.io/.

25. Dirichlet, G. L., "Uber die Reduktion der positiven quadratischen Formen mit," J. Reine Angew. Math., Vol. 40, 209-227, 1850.

26. Voronoi, G., "Deuxieme memoire: Recherches sur les paralleloedres primitifs," J. Reine Angew. Math., Vol. 136, 67-181, 1909.
doi:10.1515/crll.1909.136.67

27. Voronoi, G., "Nouvelles applications des parametres continus a la theorie des formes quadratiques, deuxieme Memoire: Recherches sur les parallello'edres primitifs," J. Reine Angew. Math., Vol. 134, 198-287, 1908.
doi:10.1515/crll.1908.134.198

28. Souvaine, D., M. Horn, and J. Weber, , 2005, [Online], Available: http://www.cs.tufts.edu/comp/163/notes05/voronoi handout.pdf, [Accessed 2021].

29. Hu, Y., Q. Zhou, X. Gao, A. Jacobson, D. Zorin, and D. Panozzo, "Tetrahedral meshing in the wild," ACM Trans. Graph., Vol. 37, 60:1-60:14, August 2018.

30. Treece, G., R. Prager, and A. H. Gee, "Regularised marching tetrahedra: Improved iso-surface extraction," Computers & Graphics, Vol. 23, No. 4, 583-598, 1999.
doi:10.1016/S0097-8493(99)00076-X

31. Moldovan, W. J., J. Rhinelander, and Dean, "Pybind11 --- Seamless operability between C++11 and Python,", 2017, [Online], Available: https://github.com/pybind/pybind11.