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Abstract—3D printing is revolutionizing manufacturing and is now being considered in the electronics
industry. The creation of the first 3D volumetric circuit (3DVC) has created a way to make circuits
smaller, lighter, into unconventional form factors and exploit physics like anisotropy more effectively
than planar geometries can. While this is exciting, many problems must be solved to make 3DVCs a
reality. One of these problems is electromagnetic interference and mutual coupling between components
that are expected to be highly problematic in high frequency 3DVCs. Spatially-variant anisotropic
metamaterials (SVAMs) could be a solution to overcome this difficulty, but research in this area is not
possible without a way to generate SVAMs around multiple components. In this paper, an algorithm is
integrated into CAD software that can generate SVAMs for 3D circuits which will enable future studies
of SVAMs.

1. INTRODUCTION

3D printing or additive manufacturing has revolutionized the manufacturing industry and holds great
promise to change how electronic devices are designed and manufactured [1]. The geometric freedom
offered by 3D printing enables the idea of a 3D volumetric circuit (3DVC) where electrical components
can be placed at any position and be oriented at any angle throughout the entire volume of the circuit.
The first 3DVC manufactured in a single-step process was designed and 3D printed by Carranza et
al. [2]. This opened a new paradigm in circuit technology because 3DVCs can be made smaller, lighter,
formed into unconventional form factors, and exploit physics that are difficult in planar circuits. The
greater geometric freedom component placement allows trace lengths to be shorter to improve bandwidth
and power efficiency. However, to realize these benefits several challenges must be overcome including
thermal management, testing, mutual coupling, design practices, and interference.

In 2012, a novel algorithm to generate spatially-variant lattices (SVLs) was introduced by
Rumpf and Pazos [3]. This work followed a few dissertations from Garcia [4], Pazos [5], Berry [6],
Gutierrez [7] showing the progress in spatial variance, metamaterials and photonic crystals. Other
advancements in 3D printed SVLs have been reported in [8–13]. In [8], it was shown that the near field
of a device can be reshaped by embedding it in a spatially variant anisotropic metamaterial (SVAM).
This research demonstrated the manipulation of near fields in ways that can reduce the interference and
mutual coupling between components in close proximity.

In contrast to prior work, the SVAMs discussed here are based on space stretching where
the coupling between adjacent components is reduced by increasing the electrical distance between
components while the physical distance remains unchanged. Transformation optics (TO) [14, 15]
provides a way to determine the material properties that are needed to electrically stretch the space
between components. To realize this concept in a 3DVC, an algorithm is needed to calculate the
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geometry of the SVAM that completely infiltrates the space between all the components. This paper
presents the algorithm that generates the SVAM for 3DVCs. A prototype of the algorithm was developed
in [16] using the finite-difference method (FDM). However, the staircase approximation of FDM led to
errors in the lattices and inefficiencies in the algorithm. In the present work, this problem was overcome
by using the finite element method (FEM). Finally, the proposed algorithm was implemented and
integrated into the CAD software Blender [17] using its python scripting interface. This makes it easier
for a user to design 3D circuits in Blender and generate SVAMs in the same environment without
having to deal with the underlying numerical methods. This will enable future research to study how
to properly implement SVAMs and to evaluate their effectiveness.

2. SPACE STRETCHING WITH A NUM

There are at least two ways that SVAMs might be used to reduce coupling and interference, space
stretching [18], and field sculpting [8]. The SVAMs generated in the present work operate on the
principle of space stretching, where the electrical distance between components is increased without
changing the physical distance. Transformation optics (TO) was used to determine the properties of
the medium that can perform this function. The medium that can provide space stretching along the z
axis is determined by a coordinate transformation that scales the z axis by a factor a. This coordinate
transformation is applied to Maxwell’s equations, the equations are rearranged to associate the math of
the transform with permeability µ and permittivity ε instead of the coordinates, and the result describes
the medium that performs this space stretching. The process gives

[µ′] = [ε′] =

[
εa 0 0
0 εa 0
0 0 ε/a

]
(1)

The first two diagonal elements in Eq. (1) are called the ordinary permittivity εo, and the third is
called the extraordinary permittivity εe. The values of ordinary and extraordinary permittivity can be
obtained using the following equations [18, 19]

εo ∼= fε1 + (1− f) ε2
1

εe
∼=

f

ε1
+

1− f

ε2

(2)

where ε1 and ε2 are the permittivity values of the two materials comprising the artificial medium
providing the anisotropy, and f is the volumetric fill factor for the fraction of the SVAM composed of
ε1. The NUMs are non-resonant, incredibly broadband, and typically exhibit a uniform response from
DC up to a cutoff frequency where they begin to be resonant [18]. Equation (1) corresponds to a negative
uniaxial medium when a > 1. There are no negative constitutive values in a NUM. The negative label is
convention and simply refers to the fact that the ordinary permittivity is greater than the extraordinary
permittivity. Both the ordinary and extraordinary permittivities are positive quantities in this work.
In [18], it was shown that NUM can be formed using alternating layers of two different materials with
different constitutive values. The resulting structure is called a negative uniaxial metamaterial (NUM).
It was further shown that space stretching is maximized when the thicknesses of all the layers are equal
and made to be less than a quarter wavelength inside the medium [18]. The concept of forming a NUM
between two objects is illustrated in Figure 1.

The NUM is not a Bragg grating because the layers are much too subwavelength to produce any
scattering. To demonstrate the operation of a NUM, a directional coupler was simulated using the
finite-difference frequency-domain (FDFD) method [20–22]. The waveguides in a directional coupler
exchange power periodically when they are brought close enough together to be electromagnetically
coupled [20]. In this simulation, the NUM has increased the electrical distance between the waveguides,
thus significantly weakening the directional coupling. More intuitively for some, the weakening of the
directional coupling can also be explained through the mechanism of field sculpting [19]. The near-
field of a device embedded in a NUM tends to develop in the directions with the highest constitutive
values. In this case, the evanescent field is pushed in the transverse directions instead of in the direction
connecting the waveguides. Different materials between two waveguides have been used to show that it
is only the NUM that significantly weakens the directional coupling.
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(a) (b)

Figure 1. (a) Two objects are placed at a distance d in z direction. (b) Alternating layers of two
materials form a NUM between the two objects.

The three-dimensional problem considered here was reduced to a two-dimensional simulation using
the effective index method described in [20]. Four separate simulations were performed with a different
homogeneous mediums placed between the same two waveguides. Figures 2(a)–(d) show various isotropic
mediums placed between the waveguides. While the directional coupling is the weakest with air placed
between the waveguides, directional coupling is still observed in all four cases. A NUM is placed between
the waveguides in Figure 2(e), and the directional coupling is suppressed dramatically [23].

(a) (b) (c) (d) (e)

Figure 2. Simulation results for directional coupler using different materials between the waveguides.
(a)–(d) Range of homogeneous materials between waveguides. (e) NUM between the waveguides.
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3. ALGORITHM TO GENERATE A SVAM

It is trivial to generate a NUM between just two objects. However, it is not as clear how to place a
NUM between multiple components in a 3DVC while keeping the overall structure of the NUM smooth,
continuous, and free of defects. The orientation of the NUM must be spatially varied while being kept
continuous and maintaining the baseline design of alternating layers between adjacent components.
The resulting spatially-varied NUM is called a spatially-variant anisotropic metamaterial (SVAM). This
section presents an algorithm that can generate an SVAM around any number of components in a
3DVC.

The core of the algorithm was developed using the geometry processing library libigl [24] which is
written in C++. The first step of the algorithm is to import the meshes of the 3DVC components and
create a bounding region that will contain the SVAM to the vicinity of the components. The second step
is to apply the Voronoi algorithm to identify regions around each component where isolated sections
of the SVAM will be generated and then later connected. The space allocated to each object from the
Voronoi algorithm is called Voronoic cell. Third, volumetric tetrahedral meshes are generated over the
boundary of each Voronoic cell. Fourth, Laplace’s equation is solved in each Voronoic cell to generate a
linear gradient function inside the cells that extends from 0 at the boundary of the component to 1 at
the boundary of the Voronoic cell. Fifth, isocontours are created from these gradients that become the
interfaces between the alternating materials comprising the SVAM. To bound the SVAM to the final
shape of the circuit, a Boolean operation is performed to remove any part of the SVAM that resides
outside of what is defined by the shapefile.

To illustrate the algorithm, consider the 3DVC shown in Figure 3(a) in which an SVAM will be
generated. The black lines forming a box around the components define the final shape of the circuit
with SVAM.

(a) (b)

Figure 3. (a) Circuit components of a 3DVC. (b) Circuit components with bounding region.

First, the mesh data of circuit components are imported into the algorithm. The maximum distance
between the components is measured, and a bounding region is created whose length is multiple times
larger than the maximum distance. The bounding region should be large enough so that it will be able
to perform the Boolean operation to give the desired shape of the circuit at the end of the algorithm.
For the current circuit, the bounding region is a square box, and its length is five times larger than the
maximum distance. The Voronoic cells will be generated inside the bounding region in following steps.
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The bounding region restricts the Voronoic cells from extending out to infinity.
As the algorithm progresses, isolated regions of the SVAM will be generated around each circuit

component separately inside each Voronoic cell. Later, these sub-SVAMs will be combined to form the
overall SVAM. This requires separate volumes of space to be identified around each component such
that when stacked together they perfectly fill the volume of the 3DVC without any overlaps or voids.
The isolated regions are calculated by applying the Voronoi algorithm [25–27] on circuit components
and the bounding region. The Voronoi algorithm identifies the volume of space around each component
that is closer to that component than any other component. A Voronoic cell is calculated from the
intersection of half-planes created by taking the perpendicular bisector of the closest two points [28].
The CAD files used in this algorithm are STL/OBJ, which are surface meshes. The vertices of these
triangular meshes are the point clouds of the object. The Voronoi algorithm is applied to these point
clouds. Some points at the outer surface of the circuit components do not have another point to perform
Voronoi tessellation. So, these Voronoic cells reach infinity. The bounding region is created to provide
additional points that restrict Voronoic cells from going to infinity. Figure 3(b) shows the bounding
region with the circuit components.

Figure 4 shows the components surrounded with their respective Voronoic cells. The Voronoic cells
are only surface meshes. The next step is to calculate a gradient inside the Voronoic cells. Volumetric
meshes are needed to perform the gradient operation. The tetrahedral meshing library TetWild [29]
was used to convert the surface meshes to volumetric tetrahedral meshes.

Figure 4. 3D circuit components with their corresponding Voronoic cells.

Each Voronoic cell has an outer surface created from the Voronoi algorithm. It also has a hollow
inner surface defined by the outer boundary of the component it encloses. The boundary conditions
are applied to both inner and outer surfaces. The hollow surface inside the Voronoic cell is set to 0,
and the outer surface of the Voronoic cell is set to 1. Then a gradient is generated in the volume mesh
inside the Voronoic cell by solving Laplace’s equation. Laplace’s equation for a scalar function f in a
3D space is

∇2f = 0 (3)

Laplace’s equation fills the meshes with a smooth gradient from 0 to 1 between two surfaces throughout
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(a) (b) (c)

Figure 5. (a) Boundary conditions to solve Laplace’s equation. (b) Gradient inside the Voronoic cell.
(c) Rings formed inside Voronoic cell from the isocontours of the gradient.

the entire Voronoic cell. Figure 5 shows the cross-section of a Voronoic cell. Figure 5(a) shows the
boundary conditions used to solve Laplace’s equation. Figure 5(b) shows the gradient inside the Voronoic
cell after solving the Laplace equation.

The marching tetrahedra method [30] is applied for isocontouring the gradient solution. The idea
of this method is to contour the isosurface passing through each tetrahedron. The method iterates
over all tetrahedra in the mesh and stitches together the final mesh [24]. This creates rings inside
the Voronoic cell. Figure 5(c) shows the rings formed inside the Voronoic cells. These isocontours
form the interfaces between alternating layers of the SVAM. Figure 6 shows the rings generated in the
space between multiple circuit components. This figure also shows that the isocontours created in each
Voronoic cell have been stitched together to form a single continuous SVAM.

Figure 6. Cross-section of Voronoic cells showing rings formed around the multiple components.

The desired shape of the final circuit needs to be provided in the form of a CAD file. The file
containing the final shape of the circuit will be called the shapefile. This is shown in Figure 6 by the
white box outline. A Boolean operation is performed with the volumetric isocontours and the shapefile.
It should be noted that the length of the bounding region should be large enough to perform a Boolean
operation to result in the desired shape. Figures 7(a) and (b) show two alternating layers of SVAM
after the Boolean operation. These two layers represent two different materials that form the SVAM.
Figure 7(c) shows the two alternating layers together forming the final SVAM.
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(a) (b) (c)

Figure 7. (a) Material 1 of the SVAM. (b) Material 2 of the SVAM. (c) Both materials together form
the overall SVAM.

4. INTEGRATING THE SVAM ALGORITHM INTO BLENDER

The SVAM algorithm was integrated into the CAD software Blender to give it a graphical user interface
(GUI) and make it more convenient to use. A user can design or import a 3DVC in Blender and use this
algorithm to fill the space between components with an SVAM. Blender is a popular, free, and versatile
CAD software that allows python scripting to incorporate custom add-ons. The algorithm was written
in C++, and Blender uses python scripting. To merge the two, pybind11 [31] was used to connect the
C++ SVAM algorithm to Python in Blender. Screenshots of the SVAM algorithm in Blender are shown
in Figure 8. The left window in Figure 8(a) shows part of the python code that creates the SVAM panel
and links the SVAM algorithm with Blender. The middle window is the SVAM panel that appears after
running the python code. The right window is the Blender viewport showing circuit components where
the SVAM will be formed around.

After importing or designing the circuit components in Blender, mesh data of the components are
extracted using python, and these data are sent to the algorithm written in C++ using pybind11. The
algorithm creates a bounding region, performs Voronoi tessellation, solves the Laplace equation, creates
isocontours around each object, and performs the Boolean operation for the final SVAM. The C++
code returns two mesh files for two different materials which are visualized in the Blender 3D viewport.
The two mesh files making the SVAM can be seen in blue and orange colors in Figure 8(b).

(a) (b)

Figure 8. (a) Screenshot from left to right of Blender showing the python scripting interface, the
SVAM panel and the 3D circuit objects. (b) Screenshot of Blender showing the SVAM panel and the
SVAM formed around the 3D circuit components.
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The SVAM panel (middle window of Figure 8(a) and left window of Figure 8(b)) has three
attributes. The first attribute at the top is ‘Layers’ which allows the user to select the number of
alternating layers that will be generated around each component. The attribute ‘Directory’ allows
users to browse the computer directory to upload the shapefile. After defining the number of layers
and importing the shapefile, the ‘Create SVAM’ button is clicked to run the python and C++ code
that generates the SVAM. After calculation, the final SVAM is shown along with the circuit in the
3D viewport of Blender. The right window in Figure 8(b) shows the created SVAM layers around the
circuit components.

Figure 9. 3D printed 3DVC with SVAM.

5. DISCUSSION AND CONCLUSION

The circuit and SVAM depicted in Figure 7(c) was 3D printed using dielectric materials, and the
manufactured device is shown in Figure 9. This shows that the algorithm can spatially vary the layers
of two materials to form an SVAM, and the mesh has sufficient quality to be 3D printed. This algorithm
will enable exploration of incorporating SVAMs into many types of 3DVCs. Given this algorithm,
research can be performed that will determine how to best design and implement SVAMs. Topics
that should be explored for SVAMs include materials, where to place the SVAM, what components
to conform around, the number of layers required, and more. The future research associated with the
SVAM algorithm is to design a functional circuit, manufacture and test the designed circuit.
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