1. Iqbal, A., A. Smida, A. J. Alazemi, M. I. Waly, N. Khaddaj Mallat, and S. Kim, "Wideband circularly polarized MIMO antenna for high datawearable biotelemetric devices," IEEE Access, Vol. 8, 17935-17944, 2020, doi: 10.1109/ACCESS.2020.2967397, http://dx.doi.org/10.1109/ACCESS.2020.2967397.
doi:10.1109/ACCESS.2020.2967397
2. Smida, A., A. Iqbal, A. J. Alazemi, M. I. Waly, R. Ghayoula, and S. Kim, "Wideband wearable antenna for biomedical telemetry applications," IEEE Access, Vol. 8, 15687-15694, 2020, doi: 10.1109/ACCESS.2020.2967413, http://dx.doi.org/10.1109/ACCESS.2020.296741.
doi:10.1109/ACCESS.2020.2967413
3. Chaturvedi, D. and S. Raghavan, "A compact metamaterial-inspired antenna for WBAN application," Wirel. Pers. Commun., Vol. 105, No. 4, 1449-1460, 2019, doi: 10.1007/s11277-019-06153-z, http://dx.doi.org/10.1007/s11277-019-06153-z.
doi:10.1007/s11277-019-06153-z
4. Goswami, S. and D. C. Karia, "A metamaterial-inspired circularly polarized antenna for implantable applications," Engineering Reports, Vol. 2, No. 10, e12251, doi: 10.1002/eng2.12251, http://dx.doi.org/10.1002/eng2.12251.
5. Soh, P. J., G. A. Vandenbosch, S. L. Ooi, and N. H. M. Rais, "Design of a broadband all-textile slotted PIFA," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 379-384, 2011.
doi:10.1109/TAP.2011.2167950
6. Hazarika, B. and B. Basu, "Multi-layered low-profile monopole antenna using metamaterial for wireless body area networks," 2019 International Conference on Automation, Computational and Technology Management (ICACTM), 431-435, 2019.
doi:10.1109/ICACTM.2019.8776720
7. Hu, B., G. P. Gao, L. L. He, X. D. Cong, and J. N. Zhao, "Bending and on-arm effects on a wearable antenna for 2.45 GHz body area network," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 378-381, 2015.
8. Bouazizi, A., G. Zaibi, A. Iqbal, A. Basir, M. Samet, and A. A. Kachouri, "Dual-band caseprinted planar inverted-F antenna design with independent resonance control for wearable short range telemetric systems," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 8, e21781, 2019.
doi:10.1002/mmce.21781
9. Iqbal, A., A. J. Alazemi, and N. Khaddaj Mallat, "Slot-DRA-based independent dual-band hybrid antenna for wearable biomedical devices," IEEE Access, Vol. 7, 184029-184037, 2019, doi: 10.1109/ACCESS.2019.2960443, http://dx.doi.org/10.1109/ACCESS.2019.2960443.
doi:10.1109/ACCESS.2019.2960443
10. Elfergani, I., A. Iqbal, C. Zebiri, et al. "Low-profile and closely spaced four-element MIMO antenna for wireless body area networks," Electronics, Vol. 9, No. 2, 258, 2020, doi: 10.3390/electronics9020258, http://dx.doi.org/10.3390/electronics9020258.
doi:10.3390/electronics9020258
11. Aziz Ul Haq, M. and S. Koziel, "On topology modifications for wideband antenna miniaturization," AEU --- International Journal of Electronics and Communications, Vol. 94, 215-220, 2018, doi: https://doi.org/10.1016/j.aeue.2018.07.006, http://dx.doi.org/https://doi.org/10.1016/j.aeue.2018.07.006.
doi:10.1016/j.aeue.2018.07.006
12. Ali, T. and R. C. Biradar, "A compact multiband antenna using λ/4 rectangular stub loaded with metamaterial for IEEE 802.11N and IEEE 802.16E," Microwave and Optical Technology Letters, Vol. 59, No. 5, 1000-1006, 2017, doi: 10.1002/mop.30454, http://dx.doi.org/10.1002/mop.30454.
doi:10.1002/mop.30454
13. Ajetrao, K. and A. Dhande, "Study of metamaterials and analysis of split ring resonators to design multiband and UWB antennas," GRENZE International Journal of Engineering and Technology, 2, 2016, doi: 10.21647/gijet/2016/v2/i2/48895, http://dx.doi.org/10.21647/gijet/2016/v2/i2/48895.
14. Ali, T., A. Mohammad Saadh, R. Biradar, J. Anguera, and A. Andújar, "A miniaturized metamaterial slot antenna for wireless applications," AEU --- International Journal of Electronics and Communications, Vol. 82, 368-382, 2017, doi: https://doi.org/10.1016/j.aeue.2017.10.005, http://dx.doi.org/https://doi.org/10.1016/j.aeue.2017.10.005.
doi:10.1016/j.aeue.2017.10.005
15. Zhu, C., T. Li, K. Li, et al. "Electrically small metamaterial-inspired tri-band antenna with meta-mode," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1738-1741, 2015.
doi:10.1109/LAWP.2015.2421356
16. Raval, F., Y. Kosta, and H. Joshi, "Reduced size patch antenna using complementary split ring resonator as defected ground plane," AEU --- International Journal of Electronics and Communications, Vol. 69, No. 8, 1126-1133, 2015, doi: https://doi.org/10.1016/j.aeue.2015.04.013, http://dx.doi.org/https://doi.org/10.1016/j.aeue.2015.04.013.
doi:10.1016/j.aeue.2015.04.013
17. Lee, J. G. and J. H. Lee, "SAR reduction using integration of PIFA and AMC structure for pentaband mobile terminals," International Journal of Antennas and Propagation, Vol. 2017, Article ID 6196721, 2017.
18. Kim, S., K. Kwon, and J. Choi, "A compact circularly-polarized antenna with enhanced bandwidth for Wban applications," Microwave and Optical Technology Letters, Vol. 55, No. 8, 1738-1741, 2013.
doi:10.1002/mop.27620
19. Sultan, K. S., H. H. Abdullah, and E. A. F. Abdallah, "Low-SAR miniaturized handset antenna using EBG," Microstrip Antennas: Trends in Research on, Vol. 1, 127, 2017.
20. Chen, Y. S. and T. Y. Ku, "A low-profile wearable antenna using a miniature high impedance surface for smartwatch applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1144-1147, 2015.
21. Igarashi, A. and Y. Okano, "Basic research of reduction technique for the microwave exposure with conductive cloth," 2010 Asia-Pacific Microwave Conference, 1364-1367, 2010.
22. Sultan, K. S., H. H. Abdullah, E. A. Abdallah, and E. A. Hashish, "Low-SAR, miniaturized printed antenna for mobile, ISM, and WLAN services," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1106-110, 2013.
doi:10.1109/LAWP.2013.2280955
23. Gómez-Villanueva, R., H. Jardón-Aguilar, and R. L. Y. Miranda, "State of the art methods for low SAR antenna implementation," Proceedings of the Fourth European Conference on Antennas and Propagation, 1-4, 2010.
24. Wang, M., Z. Yang, J. Wu, et al. "Investigation of SAR reduction using flexible antenna with metamaterial structure in wireless body area network," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 6, 3076-3086, 2018.
doi:10.1109/TAP.2018.2820733
25. Lakshmanan, R. and S. K. Sukumaran, "Flexible ultra wide band antenna for WBAN applications," Procedia Technology, Vol. 24, 880-887, Part of Special Issue: International Conference on Emerging Trends in Engineering, Science and Technology (ICETEST --- 2015), 2016, doi: https://doi.org/10.1016/j.protcy.2016.05.149, http://dx.doi.org/https://doi.org/10.1016/j.protcy.2016.05.149.
26. Al-Sehemi, A. G., A. A. Al-Ghamdi, N. T. Dishovsky, N. T. Atanasov, and G. L. Atanasova, "Flexible and small wearable antenna for wireless body area network applications," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 11-12, 1063-1082, 2017.
doi:10.1080/09205071.2017.1336492
27. Agarwal, K., Y. X. Guo, and B. Salam, "Wearable AMC backed near-endfire antenna for onbody communications on latex substrate," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 6, No. 3, 346-358, 2016.
doi:10.1109/TCPMT.2016.2521487
28. Mantash, M., A. C. Tarot, S. Collardey, and K. Mahdjoubi, "Investigation of flexible textile antennas and AMC reflectors," International Journal of Antennas and Propagation, Vol. 2012, Article ID 236505, 2012.
29. Lago, H., P. J. Soh, M. F. Jamlos, N. Shohaimi, S. Yan, and G. A. Vandenbosch, "Textile antenna integrated with compact AMC and parasitic elements for WLAN/WBAN applications," Applied Physics A, Vol. 122, No. 12, 1-6, 2016.
doi:10.1007/s00339-016-0575-9
30. Zhang, K., P J. Soh, and S. Yan, "Meta-wearable antennas --- A review of metamaterial based antennas in wireless body area networks," Materials, Vol. 14, No. 1, 149, 2021.
doi:10.3390/ma14010149
31. Alhawari, A. R, A. Almawgani, A. T. Hindi, H. Alghamdi, and T. Saeidi, "Metamaterial-based wearable flexible elliptical UWB antenna for WBAN and breast imaging application," AIP Advances, Vol. 11, No. 1, 015128, 2021.
doi:10.1063/5.0037232
32. Iqbal, A., A. Basir, A. Smida, et al. "Electromagnetic bandgap backed millimeter-wave MIMO antenna for wearable applications," IEEE Access, Vol. 7, 111135-111144, 2019, doi: 10.1109/ACCESS.2019.2933913, http://dx.doi.org/10.1109/ACCESS.2019.2933913.
doi:10.1109/ACCESS.2019.2933913
33. Keshwani, V. R., P. P. Bhavarthe, and S. S. Rathod, "Eight shape electromagnetic band gap structure for bandwidth improvement of wearable antenna," Progress In Electromagnetics Research C, Vol. 116, 37-49, 2021.
doi:10.2528/PIERC21070603
34. Verma, A., R. K. Arya, R. Bhattacharya, and S. N. Raghava, "Compact PIFA antenna with high gain and low SAR using AMC for WLAN/C-band/5G applications," IETE Journal of Research, Vol. 1, No. 11, 2021.