
Progress In Electromagnetics Research C, Vol. 122, 165–181, 2022

An Metamaterial Inspired Antenna with CSRR and Rectangular
SRR Based Flexible Antenna with Jeans Gap Filled

for Wireless Body Area Network

Siddhant Goswami* and Deepak C. Karia

Abstract—In this paper, a flexible compact Jeans gap filled metamaterial inspired antenna is proposed
to operate at 2.4GHz in the Industrial Scientific and Medical (ISM) band. This designed antenna
is flexible having size of about 27 × 23mm2 with substrate of thickness 0.3mm. The proposed
antenna comprises two complementary split ring resonators at ground plane and one circular ring
and complementary rectangular split ring resonator. The top patch consists of two rectangular split
ring resonators etched inside the rectangular patch. The use of SRR and CSRR on top and bottom of
patch has helped to reduce the size of antenna along with maintaining performance of antenna. Further
enhancements are done to make it jeans gap filled antenna with jeans filled between main patch and
superstrate. The superstrate top patch consists of a square EBG structure. The simulation results
have shown an increase in return loss due to the use of square EBG structure on superstrate. The
simulated directivity obtained on antenna is 2.0775 dB. The measured and simulated results are in a
good agreement. The motivation of this work is to design a compact metamaterial based antenna for
wireless body area network with gap coupled jeans material to nullify effects of human body. Effects of
air gap coupled and jeans gap coupled are analyzed in terms of performance. While the final antenna
(Antenna-4) is designed, several iterations are tried to optimize and maintain good performance. Step 1
(Antenna-1) consists of two complementary split ring resonators along with a circular ring placed in
ground plane with thickness of polyamide substrate as 0.3mm. Step 2 (Antenna-2) consists of two split
ring resonators along with a circular ring placed in ground plane. An air gap coupled superstrate is
designed having gap between main patch and superstrate as 1mm. Step 3 (Antenna-3) has the same
configuration as Antenna-2, and the only difference is the air gap between main patch and superstrate
which is replaced by jeans material. Step 4 (Antenna-4) is the final designed antenna with miniaturized
size of 27×23mm2 as compared with previous antenna configurations. This research work has identified
the challenges involved for designing an antenna in a wireless body area network. Practical aspect of
design needs to consider: a) Bending effect on performance as movement and physiological changes might
affect the performance. b) Performance degrades when antenna comes in contact with human body.
Bending Effect: This work has also analyzed the effect of bending on return loss. For the final designed
antenna (Antenna-4), maximum bending up to bend 30◦ is possible. Further bending would break the
substrate. After maximum bending, the measured return loss is about −16.7071 dB at 2.28GHz. Body
area network: The designed final antenna (Antenna-4) is tested on different parts of human body such
as human-arm and leg. No major difference is seen on return loss when it is tested on different parts
of body. The designed final antenna (Antenna-4) is tested on direct contact with human-arm as well
as with different cloths (cotton jeans, cotton, curtain cloth, floor cloth, polyester and Turkish cloth)
having different permittivities with the distance between cloth and antenna as 0 cm and 1 cm. Wearable
antennas should be carefully constructed to avoid causing harm to the human body when being worn.
The Low Specific Absorption Rate is one of the criteria that should be considered while developing a
wearable antenna. The maximum allowable SAR limit is 1.6W/kg. The specific absorption rate for
Antenna-4 is 0.2W/kg when input power is 1watt and is 0.036W/kg when input power is 100milli watt.
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The results obtained show that the proposed antenna is both safe and acceptable for use in compliance
with the World Health Organization’s ICNIRP requirements.

1. INTRODUCTION

Wireless Body Area Network in brief:
WBAN offers potential of improvement in both medical and non-medical fields. In medical fields,

WBAN technology can be used to monitor patient health, measuring changes in patient vital signs, and
also medical applications including rehabilitation after surgeries. It allows distant doctors to have real
time opinions in diagnosis (remote health patient monitoring system) and tracking human movement
in home based rehabilitation scheme. This has been used in placing sensors inside body (Implantable)
or on body or around body. Wearable antenna technology is mostly used for heart rate monitoring,
temperature monitoring, respiration rate monitoring, mobile communication, and military applications.
A significant interest is seen for flexible/semi-flexible devices to be worn for biomedical telemetry
applications. Bio-telemetry is used for remote monitoring of biomedical parameters of patient [1, 2].

In non-medical fields, WBAN is used in entertainment, security (fire-alarm), fitness monitoring
applications, monitoring aeroplane pilot’s and truck driver’s tiredness [3, 4].

The demand for on-body flexible antenna has been increasing with a large requirement in sports
(Non-medical field), health-monitoring, and post checkups (Medical field).

In the present market, the key considerations for electronic wearable devices are that they should
work in robust environment [5], compact size, low profile [6], flexible in design [7] and should have
minimal SAR (Specific Absorption Rate) so as to meet the market needs.

This promising work of designing antenna for wireless body area network has led many researchers
to focus on realization of antennas. Several antennas such as planar inverted-F antenna (PIFA) operating
at ISM and MICS band [8], cylindrical dielectric resonator antenna for wearable biomedical devices [9],
single input single output (SISO), and multiple input and multiple output (MIMO) antennas are
proposed in literature [10].

In the literature, several efforts have been carefully made to reduce the size of antenna [4, 11],
such as metamaterial SRR [12, 13], metamaterial cpw-fed CSRR, rectangular complementary split
ring resonator [14], adding rectangular slots in conventional rectangular patch [2], complementary
triangular electromagnetic resonator [15], and complementary split ring resonator [16]. Along with
compact size maintaining minimal SAR values is an important factor in designing on body antenna as
per ICNIRP (International Commission on Non-Ionizing Radiation Protection) standards of World
Health Organization. Literature suggests several methods to reduce SAR as capacitive grating
AMC structures [17], using meandering the monopole [18], using electromagnetic bandgap (EBG)
structure [19], loading antenna with high impedance surfaces [20], using electro conductive cloth [21],
and using metamaterials [22, 23].

The new trend is to support the lives of elderly people remotely. Technology is required to enhance
the feeling of protection for old-age assistance, such as breathing issues, routine acts, body temperature,
and sleep or limb activity to assist in the spontaneous well-being monitoring. The sensors used in
wireless body area network could monitor that the exercises performed are not very hard and ought to
be in permitted limits. The wireless communication technology is enhanced due to rapid innovation in
antenna technology. As per present demand in information-oriented society, wearable systems requires
flexibility to be incorporated in order to provide wireless connectivity operating in specific bands [24–26].

Wearable antennas have been recently studied due to ease of integration and flexibility in design [27].
Flexible textile antennas play a major role in wireless body area network [28, 29].

Due to their flexibility and simplicity of integration with textile materials, flexible textile antennas
are attractive candidates for WBAN systems. The integration of antenna with textile material such as
jeans, measuring performance on various parts of body, provides the practical aspect to the design.

2. CHALLENGES INVOLVED

1. Performance degrades when antenna comes in contact with human body. This body effect on
antenna performance should be reduced [30, 31].
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2. Bending effect degrades the performance. This degradation should be reduced [2, 32].

3. Current healthcare needs a solution for remote monitoring with good performance.

4. Movement and physiological changes might affect devices that need to be attached to different parts
of human body.

3. ANTENNA DESIGN METHODOLOGY

The configuration of proposed antenna is shown in Fig. 1(a), Fig. 1(b), Fig. 2(a), and Fig. 2(b). Four
steps are described to get the final design of antenna (Antenna-4). The results obtained show minimum
human body effect on antenna return loss. Further, Antenna-2, Antenna-3, and Antenna-4 are tested
on human hand as well as in the vicinity of different cloths.

(a) (b)

Figure 1. (a) Step 1-(Antenna-I Model). (b) Step 2-(Antenna-II Model).

(a) (b)

Figure 2. (a) Step 3-(Antenna-3 Model). (b) Antenna-4 Model.

4. STEPWISE DESIGN ANALYSIS

Several iterations are tried to optimize the antenna and maintain good performance.

4.1. Step 1 (Antenna-1)

In this step, antenna has two complementary split ring resonators along with a circular ring placed in
ground plane. A simple rectangular patch is designed on top view as shown in Fig. 3(a) and Fig. 3(b).
The fabricated antenna is shown in Fig. 4(a) and Fig. 4(b). The thickness of antenna substrate is
0.3mm with polyamide material. This designed antenna is flexible and adds a robustness to design.

Table 1 shows the parameter dimensions of Antenna-1. Antenna-1 shows good simulated return
loss of −23.4260 dB at 2.4GHz, and measured return loss is about −20 dB as shown in Fig. 5(a). The
measured and simulated results are in good agreement. The VSWR is below 3 in frequency range of
2.4GHz as shown in Fig. 5(b). The obtained bandwidth of Antenna-1 is 120MHz as shown in Fig. 5(a).
The antenna has directivity of 2.7085 dB, as shown in Fig. 6(a). The impedance of antenna is around
44.43 dB at 2.4GHz as shown in Fig. 6(b). The radiation patterns in E plane and H plane are shown
in Fig. 7(a) and Fig. 7(b).

4.2. Step 2 (Antenna-2)

In this step, the antenna has two split ring resonators along with a circular ring placed in ground plane.
An air gap coupled superstrate has been designed. The gap between the main patch and superstrate is
1mm. The simulated-gap coupled antenna is shown in Fig. 8(a). The fabricated antenna is shown in
Fig. 8(b).
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(a) (b)

Figure 3. HFSS Model for Antenna-1. (a) Step 1: Top View of Antenna. (b) Step 1: Bottom View of
Antenna.

(a) (b)

Figure 4. Step 1: (a) Top view of Antenna-1; (b) Bottom view of Antenna-1.
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Figure 5. (a) Antenna-1-Measured and simulated return loss. (b) Antenna-1-VSWR.

The measured as well as simulated return loss is shown in Fig. 9(a). Antenna-2 is tested in the
vicinity of human hand. It has been observed that the return loss of Antenna-2 has been reduced from
−21.42 dB to −10 dB at 2.4GHz as shown in the red line in Fig. 9(a). Fig. 9(b) shows the VSWR result
which is about 1.18. The directivity is 2.8946 dBi as shown in Fig. 10(a). There is slight improvement
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Table 1. Dimensions of Antenna-1.

Parameters Dimensions obtained

W 45mm

W1 30 mm

L 38mm

L1 27mm

P 6.16mm

S 6.405mm

K 4.87mm

T 7.8mm

R1 14.5mm

R2 2.8mm

G 2.4mm
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Figure 6. (a) Antenna-1-Directivity. (b) Antenna-I-Impedance.
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Figure 7. (a) E-Plane Radiation Pattern of Antenna-1. (b) H-Plane Radiation Pattern of Antenna-1.
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(a) (b)

Figure 8. Step 2: Air gap coupled Antenna-2. (a) HFSS design Model. (b) Fabricated design Model.
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Figure 9. (a) Antenna-2-Experimental and simulated return loss (Red Line shows on hand measured).
(b) Antenna-2-VSWR.
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Figure 10. (a) Antenna-2-Directivity. (b) Antenna-2-Impedance.

in directivity as compared to Antenna-1 due to the use of air gap coupled model. The designed antenna
is flexible, but making it gap coupled reduces its flexibility. The magnitude impedance obtained is
43.48 dB at 2.4GHz as shown in Fig. 10(b). The antenna performance has been drastically reduced
after keeping antenna in the vicinity of human body as shown in Fig. 9(a).
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(a) (b)

Figure 11. Step 3: Textile gap coupled antenna. (a) HFSS design Model. (b) Fabricated design Model.
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Figure 12. (a) Antenna-3-Experimental and simulated return loss (Red colour shows on hand
measured). (b) Antenna-3-VSWR.

4.3. Step 3 (Antenna-3)

In this step, the antenna has two split ring resonators along with a circular ring which is placed in
ground plane. An air gap coupled superstrate has been replaced with jeans material. Simulated-jeans
coupled antenna is shown in Fig. 11(a). The fabricated antenna is shown in Fig. 11(b).

The simulated and measured return losses of Antenna-3 are−37.0799 dB and−23.01 dB respectively
as shown in Fig. 12(a) and Fig. 12(b). The simulated directivity of Antenna-3 is 2.75 dB, and impedance
at 2.4GHz is about 51.4168 dB as shown in Fig. 13(a) and Fig. 13(b). The antenna performance is almost
the same after keeping antenna in the vicinity of human hand due tothe effect of jeans inside bottom
plane and superstrate. The obtained return loss on measuring on human hand is about −23.95 dB. The
flexibility of jeans coupled model is more than air gap coupled antenna. The antenna shows the return
loss of −23.75 dB at 2.324GHz, and the same return loss is obtained in the vicinity of human hand at
2.321GHz of around −23.95 dB as shown in Fig. 14(a) and Fig. 14(b). The external body effect has
been drastically reduced due to gap coupled jeans.

4.4. Step 4 (Antenna-4)

This is the final designed antenna, and the size of antenna is about 27 × 23mm2 with substrate of
thickness 0.3mm. The proposed antenna comprises two complementary split ring resonators at ground
plane and one circular ring and complementary rectangular split ring resonator. The top patch consists
of two rectangular split ring resonators etched inside the rectangular patch. The use of metamaterial on
top and bottom of patch has helped to reduce the size of antenna along with maintaining performance of
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Figure 13. (a) Antenna-3-Directivity. (b) Antenna-3-Impedance.

(a) (b)

Figure 14. Textile gap coupled antenna. (a) Measured Return Loss. (b) Measured Return loss in
vicinity of human hand.

the antenna. Further enhancements are done in order to make jeans gap filled antenna with jeans filled
between main patch and superstrate. The superstrate top patch consists of a square EBG structure
that has helped to improve the performance of antenna-4.

Table 2 shows the parameter dimensions of Antenna-4. Antenna-4 HFSS designed model is as
shown in Fig. 15(a) and Fig. 15(b).

Figure 16(a) shows the design of the EBG structure used at top of the superstrate. Fig. 16(b)
shows the fabricated antenna-4 top view.

Figure 17(a) shows the fabricated antenna bottom view, and Fig. 17(b) shows the EBG structure
and Jeans used during fabrication.

Antenna-4 shows good simulation return loss of −41.53 dB at 2.42GHz, and measured return loss
is about −35 dB at 2.3GHz as shown in Fig. 18(a). The antenna is further tested on human hand and
human leg which have shown measured results of about −32 dB and −31 dB, respectively. The measured
and simulated results are in good agreement. The VSWR is 1.56 and is close to 1 in frequency range
of 2.4GHz as shown in Fig. 18(b). The simulated directivity of Antenna-4 is 2.08 dB as shown in
Fig. 19(a), and the impedance at 2.42GHz is 50.18 as shown in Fig. 19(b). The antenna performance is
same after keeping the antenna in the vicinity of human hand and human leg due to the effect of jeans
in the bottom plane and superstrate. The external body effect has been drastically reduced due to gap
coupled jeans structure.
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Table 2. Dimensions of Antenna-4.

Parameters Dimensions obtained Parameters Dimensions obtained

W1 23.74mm W 23.74mm

L1 27.136mm L 27.136mm

X1 20.1mm T 19.16mm

C 25.1mm U 23.4mm

B 13.05mm X 13.97mm

A 13.2mm Y 13.22mm

K 10mm R 4mm

O 1.5mm R2 2mm

E 1.69mm K 10mm

I 10.26mm P 3.43mm

X1 20.1mm X2 4mm

(a) (b)

Figure 15. Step 4: Textile gap coupled antenna. (a) HFSS design Model top view. (b) HFSS design
Model bottom view.

(a) (b)

Figure 16. Step 4: Textile gap coupled antenna. (a) HFSS design Model EBG (Superstrate). (b)
Fabricated Antenna-4 Top view.
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(a) (b)

Figure 17. Step 4: Textile gap coupled antenna. (a) Fabricated Antenna-4 Bottom view. (b)
Fabricated Antenna-4 EBG and Jeans Used.
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Figure 18. (a) Antenna-4-Measured and simulated return loss. (b) Antenna-4-VSWR.
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Figure 19. (a) Antenna-4-Directivity. (b) Antenna-4-Impedance.
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5. SPECIFIC ABSORPTION RATE INVESTIGATION

According to government agencies around the world, there is a restriction in amount of radio frequency
energy consumed by body for wireless devices. The SAR value is calculated in watts per kilogram
(W/kg). SAR is a critical parameter in antenna design and should be at lower end to avoid hazardous
effects on human body. The maximum allowable SAR limit is 1.6Watts per kilogram. To analyze the
SAR value, a three layer human body model is used. The three layer model consists of skin, fat, and
muscle. The properties of a three-layer human model is shown in Table 3.

Table 3. Properties of three Layer human Model.

Layer Thickness mm ϵr
Skin 2 38

Fat 5 5.28

Muscle 20 52.7

In HFSS, for simulating specific absorption rate, we have given input power as 1Watt [33]. Also,
while calculating SAR the gap between antenna and body model is 5mm. The SAR value of Ant-1 is
1.1W/Kg, and Ant-2 is 1W/Kg obtained with gap coupled antenna model. The SAR value of Ant-3 is
further reduced to 0.9W/K. For Ant-4 the value is further reduced to 0.2W/k. The Bar Chart below
shows the specific absorption rate at 2.4GHz for input power as 1watt.
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Further, we have tested with input power as 100milli Watt [34]. Also, while calculating SAR the
gap between antenna and body model was 5mm. The SAR value of Ant-1 is 0.368W/Kg, and Ant-2
is 0.285W/Kg obtained with gap coupled antenna model. The SAR value of Ant-3 is further reduced
to 0.09W/K. For Ant-4 the value is further reduced to 0.036W/k. The Bar Chart below shows the
specific absorption rate at 2.4GHz for input power as 100milli watt.

Comprehensive comparison of the performance parameters has been done with the existing antennas
and summarized in Table 4.

The output description of the designed antenna is shown in Table 5.

6. BODY AREA NETWORK

Antenna-2, Antenna-3, and Antenna-4 are tested on different cloths in combination with hand. Table 6
shows the different cloth materials and their permittivity used during the experiment.
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Table 4. Comparison of proposed antenna with the previous literature.

Parameters Ref. [5] Ref. [13] Ref. [15] Ref. [22] Ref. [23] Ref. [24]
Current

Work

Area (mm2) 1750 1296 1444 2500 6699 10000 644

Freq (GHz) 2.45 2.45 2.4 2.4
2.3–3/

4–5.3
2.4–2.5 2.4

Substrate
Felt

(Flexible)

FR4

(Rigid)

FR4

(Rigid)

Latex

(Flexible)

Felt

(Flexible)

Felt

(Flexible)

polyamide

(Flexible)

Gain (dBi) 1.47 4.87
Not

Verified
4.12 7.3 2.42 2.08

ϵr 1.2 4.4 4.4 - 1.33 1.335 2.8

Table 5. Summary of performance for designed antennas.

Parameters Antenna-1 Antenna-2 Antenna-3 Antenna-4

Simulated Freq (GHz) 2.4 2.4 2.4 2.42

Measured Freq (GHz) 2.4 2.32 2.3 2.3

Simulated Return Loss (dB) −23.426 −21.292 −37.09 −41

Measured Return Loss (dB) −21.292 −19.14 −23.75 −35

Measured On hand Return Loss (dB) −10.292 −10.00 −23.00 −29.35

Simulated VSWR 1.44 1.18 1.02 1.56

Simulated Bandwidth (MHz) 117 70 140 60

Simulated Directivity (dB) 2.7085 2.8946 2.7596 2.08

6.1. Antenna-2

The obtained return loss for Antenna-2, when it is tested with distance of 1 cm in cloth and antenna is
about −14.5 dB. No major change in return loss is seen when it is tested with different cloths as cotton
jeans, cotton, curtain cloth, Floor cloth, polyester, and Turkish cloth.

The obtained return loss for Antenna-2, when it is tested with distance of 0 cm in cloth and antenna
is about −12.5 dB. As compared with testing return loss with 1 cm gap, −2 dB loss is observed. No
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Table 6. Cloth materials and permittivity.

Cloth Materials Permittivity

Jeans (Cotton) 1.67

Cotton 1.51

Curtain cloth 1.47

Floor Cloth 1.46

Polyester 1.44

Turkish cloth 1.1

major change in return loss is seen when it is tested with different cloths as cotton jeans, cotton, curtain
cloth, Floor cloth, polyester, and Turkish cloth.

The obtained return loss for Antenna-2, when it is tested with distance of 0 cm in cloth and antenna
and human hand is about−13.0 dB. No major change in return loss is seen when it is tested with different
cloths as cotton jeans, cotton, curtain cloth, Floor cloth, polyester, and Turkish cloth.

6.2. Antenna-3

The obtained return loss for Antenna-3, when it is tested with distance of 1 cm in cloth and antenna
is about −21.5 dB. As compared with Antenna-2, return loss is improved. No major change in return
loss is seen when it is tested with different cloths as cotton jeans, cotton, curtain cloth, Floor cloth,
polyester, and Turkish cloth. Minor difference is seen with Turkish cloth, and the obtained return loss
is about −22.5 dB.

The obtained return loss for Antenna-3, when it is tested with distance of 0 cm in cloth and antenna
is about −19 dB. As compared with testing return loss with 1 cm gap, −2.5 dB loss is observed. No
major change in return loss is seen when it is tested with different cloths as cotton jeans, cotton, curtain
cloth, Floor cloth, polyester, and Turkish cloth.

The obtained return loss for Antenna-3, when it is tested with distance of 0 cm in cloth and antenna
and human hand is about−19.8 dB. No major change in return loss is seen when it is tested with different
cloths as cotton jeans, cotton, curtain cloth, Floor cloth, polyester and Turkish cloth.

6.3. Antenna-4

The obtained return loss for Antenna-4, when it is tested with distance of 1 cm in cloth and antenna is
about −29 dB. As compared with Antenna-3, return loss is improved. No major change in return loss is
seen when it is tested with different cloths as cotton jeans, cotton, curtain cloth, Floor cloth, polyester
and Turkish cloth. Minor difference is seen with Turkish cloth, and the obtained return loss is about
−30 dB.

The obtained return loss for Antenna-4, when it is tested with distance of 0 cm in cloth and antenna
is about −27 dB. As compared with testing return loss with 1 cm gap, −2 dB loss is observed. No major
change in return loss is seen when it is tested with different cloths as cotton jeans, cotton, curtain cloth,
Floor cloth, polyester, and Turkish cloth.

The obtained return loss for Antenna-4, when it is tested with distance of 0 cm in cloth and antenna
and human hand is about−29.8 dB. No major change in return loss is seen when it is tested with different
cloths as cotton jeans, cotton, curtain cloth, Floor cloth, polyester, and Turkish cloth.

Figure 20(a) shows comparison for return loss of on hand measurement, on leg measurement, and
in free space measurement. Fig. 20(b) shows the comparison of return loss of Antenna-2, Antenna-3,
and Antenna-4.

Figure 21(a) shows the measured and simulated E plane pattern and H plane pattern.
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Figure 20. (a) Antenna 4-Comparison for return loss of hand measurement and free space. (b)
Comparison of return loss of Antenna-2, Antenna-3 and Antenna-4.

(a) (b)

Figure 21. (a) Antenna 4-Measured and Simulated E plane and H plane pattern. (b) Antenna-2-
Measured Return loss of folded Flexible Antenna.

7. FLEXIBLE ANTENNA READINGS

Antenna-2, Antenna-3, and Antenna-4 are made with a polyamide substrate having a thickness as
0.3mm.

Antenna-2 is able to bend up to 20◦ maximum, due to the use of air gap between main patch and
superstrate. Further bending of Antenna-2 would have broken the substrate. Fig. 21(b) shows that the
measured return loss of Folded Flexible Antenna is about −14.614 dB at 2.3GHz.

Antenna-3 is able to bend up to 30◦ maximum, due to the use of jeans gap between main patch
and superstrate. Further bending of Antenna-3 would break the substrate. Fig. 22(a) shows that the
measured return loss of Folded Flexible Antenna is about −17.91 dB at 2.3GHz.

Antenna-4 is able to bend up to 30◦ maximum, due to the use of jeans gap between main patch
and superstrate. Further bending of Antenna-4 would break the substrate. Fig. 22(b) shows that the
measured return loss of Folded Flexible Antenna is about −16.7071 dB at 2.28GHz.

In multi-layer configuration, Antenna-3 and Antenna-4 are more bendable than Antenna-2, due to
the use of jeans in superstrate and main patch.
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(a) (b)

Figure 22. (a) Antenna 3-Measured Return loss of folded Flexible Antenna. (b) Antenna-4- Measured
Return loss of folded Flexible Antenna.

8. CONCLUSION

In this paper, a compact metamaterial based antenna is designed to work in Industrial, Scientific and
Medical band. Metamaterial property of antenna has been proved with the help of Nicolson Ross
Method. The use of Jeans material inside main substrate and superstrate has reduced the human body
effect on antenna. The proposed antenna is compact and flexible, making it suitable for wireless body
area network. The final designed antenna is compact in size and flexible, and the use of metamaterial
helped to reduce the size of antenna. Practical measurements in the vicinity of direct hand contact
and different cloth materials are taken. Further, the bending effects of different antennas are analyzed
thoroughly.
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