Vol. 119
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-03-30
Design and Characteristics Mode Analysis of a Cantor Set Fractal Monopole Antenna for IoT Applications
By
Progress In Electromagnetics Research C, Vol. 119, 161-175, 2022
Abstract
A four-level iterated cantor set fractal antenna for Internet of Things (IoT) applications is proposed in this work. The proposed antenna operates at 2.4 GHz and for the range of 5 GHz to 8.5 GHz. In the 5 GHz to 8.5 GHz range it covers a Wi-Fi802.11 Standard (4.9 GHz, 5 GHz, 5.9 GHz, 6 GHz), 6.56 GHz, and at the lower band it covers WiMax (2.5-2.7 GHz). The proposed antenna offers a gain up to 4 dBi with an efficiency up to 90%. The designed antenna is experimented with a partial ground plane, with and without notch to perceive its effects on S11 parameters. The antenna and its feed location is optimized for improved performance. The proposed antenna is analysed using the theory of characteristics mode analysis. The antenna is fabricated on a low-cost FR4 substrate with a dielectric constant of 4.4 anda substrate height of 1.6 mm. The antenna performance in terms of S11, VSWR, and Gain is validated by measuring the performance in an anechoic chamber with Agilent N5247A Vector Network Analyser (VNA). The antenna is designed and optimized in mentor graphics software and CST Studio. The results show good agreement between the simulated and measured performances of the antenna. The optimized geometry of the antenna is compact having overall dimensions of 32 mm×22 mm×1.6 mm and suitable for short-range IoT applications.
Citation
Geeta B. Kalkhambkar, Rajashri Khanai, and Pradeep Chindhi, "Design and Characteristics Mode Analysis of a Cantor Set Fractal Monopole Antenna for IoT Applications," Progress In Electromagnetics Research C, Vol. 119, 161-175, 2022.
doi:10.2528/PIERC22012106
References

1. "Consultation paper on licensing framework for satellite-based connectivity for low bit rate applications,", Telecom Regulatory Authority of India, March 12, 2021.

2. Gupta, A. K., P. S. R. Chowdary, and M. Vamshi Krishna, "Trends in IoT antenna design - A brief review," Test Engineering and Management, 14198-14203, July 2020, ISSN: 0193-4120.
doi:10.21786/bbrc/13.13/24

3. Chindhi, P. S., H. P. Rajani, G. B. Kalkhambkar, and R. Khanai, "Characteristics mode analysis of modified inset-fed microstrip antenna for radio frequency energy harvesting, biosc," Biotech. Res. Comm., Vol. 13, No. 13, 171-176, Special Issue, 2020.

4. Chindhi, P. S., H. P. Rajani, and G. B. Kalkhambkar, "A tapered slot rectangular ultra-wideband microstrip patch antenna for radio frequency energy harvesting," Futuristic Communication and Network Technologies, 373-383, 2019.
doi:10.3390/electronics10222766

5. Abdulkawi, W. M., A. F. A. Sheta, I. Elshafiey, and M. A. Alkanhal, "Design of low-profile single-and dual-band antennas for IoT applications," Electronics, Vol. 10, 2766, 2021.
doi:10.1186/s13638-019-1386-4

6. Salucci, M., N. Anselmi, S. Goudos, and A. Massa, "Fast design of multiband fractal antennas through a system-by-design approach for NB-IoT applications," EURASIP Journal on Wireless Communications and Networking, Vol. 2019, 68, 2019.
doi:10.2528/PIERL20071104

7. Jing, J., J. Pang, H. Lin, Z. Qiu, and C. Liu, "A multiband compact low-profile planar antenna based on multiple resonant stubs," Progress In Electromagnetics Research Letters, Vol. 94, 1-7, 2020.
doi:10.2528/PIERC19110901

8. Kaur, M. and J. S. Sivia, "ANN and FA based design of hybrid fractal antenna for ISM band applications," Progress In Electromagnetics Research C, Vol. 98, 127-140, 2020.
doi:10.1007/s11277-020-07739-8

9. Samson Daniel, R., "Asymmetric coplanar strip-fed with Hilbert curve fractal antenna for multiband operations," Wireless Personal Communications, Vol. 116, No. 1, 791-803, 2020.

10. Ez-Zaki, F., H. Belahrach, and A. Ghammaz, "Broadband microstrip antennas with Cantor set fractal slots for vehicular communications," International Journal of Microwave and Wireless Technologies, 1-14, 2020.
doi:10.2528/PIERC20110601

11. Bharti, G. and J. S. Sivia, "A design of multiband nested square shaped ring fractal antenna with circular ring elements for wireless applications," Progress In Electromagnetics Research C, Vol. 108, 115-125, 2021.

12. Chindhi, P. S., G. B. Kalkhambkar, H. P. Rajani, and R. Khanai, "A brief survey on metamaterial antennas: Its importance and challenges," Futuristic Communication and Network Technologies, 425-432, 2020.

13. Kalkhambkar, G., R. Khanai, and P. Chindhi, "Fractals: A novel method in the miniaturization of a patch antenna with bandwidth improvement, information and communication technology for intelligent systems," Smart Innovation, Systems and Technologies, 106, 2019.

14. Kalkhambkar, G., R. Khanai, and P. Chindhi, "Design and analysis of wideband polygonal microstrip fractal patch antenna with three dimensional finite difference time domain method and UPML boundaries," International Journal of Advanced Research in Engineering and Technology (IJARET), Vol. 11, No. 9, 323-336, Article ID: IJARET 11 09 033, September 2020.

15. Sharma, N. and S. S. Bhatia, "Comparative analysis of hybrid fractal antennas: A review," Int. J. RF Microw. Comput. Aided Eng., e22762, 2021.

16. Anguera, J., C. Puente, C. Borja, and J. Soler, "Fractal shaped antennas: A review," Encyclopedia of RF and Microwave Engineering, https://doi.org/10.1002/0471654507.eme128, 2005.

17. Mandelbrot, B. B., The Fractal Geometry of Nature, ISBN 0-7167-1186-9, w. 320 H. Freeman and Company, 1983.
doi:10.3390/fractalfract4010003

18. Anguera, J., A. Andújar, J. Jayasinghe, V. V. S. S. Sameer Chakravarthy, P. S. R. Chowdary, J. L. Pijoan, and T. A. C. Cattani, "Fractal antennas: An historical perspective, MDPI," Fractal Fract., Vol. 4, No. 1, 3, 2020.
doi:10.2528/PIERB11053002

19. Li, Y. S., X. D. Yang, C. Y. Liu, and T. Jiang, "Analysis and investigation of a cantor set fractal UWB antenna with a notch-band characteristic," Progress In Electromagnetics Research B, Vol. 33, 99-114, 2011.

20. Terlapu, S. K., P. S. R. Chowdary, C. Jaya, V. V. S. S. Sameer Chakravarthy, and S. C. Satpathy, "On the design of fractal UWB wide-slot antenna with notch band characteristics, microelectronics, electromagnetics and telecommunications," Lecture Notes in Electrical Engineering, 471, 2018.

21. Kaur, M. and J. S. Sivia, "Giuseppe Peano and Cantor set fractals based miniaturized hybrid fractal antenna for biomedical applications using artificial neural network and firefly algorithm," Int. J. RF Microw. Comput. Aided Eng., Vol. 2019, e22000, 2019.

22. Manimegalai, B. and S. Raju, "A multifractal cantor antenna for multiband wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 2009.

23. Lee, H.-M., "Effect of partial ground plane removal on the front-to-back ratio of a microstrip antenna," 2013 7th European Conference on Antennas and Propagation (EuCAP), 2013.