Vol. 115
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-09-26
Neural-Network-Based Source Reconstruction for Estimating Linear Synchronous Motor Radiation
By
Progress In Electromagnetics Research C, Vol. 115, 219-232, 2021
Abstract
An equivalent source model based on neural network is proposed to rapidly estimate the magnetic radiation characteristics of linear synchronous motor (LSM) in electromagnetic suspension (EMS) maglev system. The equivalent source is composed of electric dipoles and a closed three-dimensional (3-D) surface, and is developed in terms of source reconstruction method. A few sampling data of magnetic field simulation results serve as the input information to determine the unknown current distribution on equivalent source model. To solve the inverse radiation problem and characterize the whole radiation pattern with high efficiency, the current distribution signature of equivalent model is fitted into artificial neural network models. Separate neural network models are fitted under different phases of winding excitation, which enables the low-frequency magnetic field estimation under both 3-phase balanced operation and unbalanced operation. The equivalent source model is extended to estimate LSM radiation in multi-source environment, and the comparison with numerical simulation verifies its accuracy and efficiency.
Citation
Lu Xing, Yinghong Wen, David W. P. Thomas, Jinbao Zhang, and Dan Zhang, "Neural-Network-Based Source Reconstruction for Estimating Linear Synchronous Motor Radiation," Progress In Electromagnetics Research C, Vol. 115, 219-232, 2021.
doi:10.2528/PIERC21071205
References

1. Liao, Z., J. Yue, and G. Lin, "Application research of hts linear motor based on halbach array in high speed maglev system," IEEE Transactions on Applied Superconductivity, Vol. 31, No. 5, 1-7, 2021.
doi:10.1109/TASC.2021.3057836

2. Wang, H., J. Li, R. Qu, J. Lai, H. Huang, and H. Liu, "Study on high efficiency permanent magnet linear synchronous motor for maglev," IEEE Transactions on Applied Superconductivity, Vol. 28, No. 3, 1-5, 2018.

3. Glatzel, K., G. Khurdok, and D. Rogg, "The development of the magnetically suspended transportation system in the Federal Republic of Germany," IEEE Transactions on Vehicular Technology, Vol. 29, No. 1, 3-17, 1980.
doi:10.1109/T-VT.1980.23816

4. Boldea, I., A. Trica, G. Papusoiu, and S. A. Nasar, "Field tests on a maglev with passive guideway linear inductor motor transportation system," IEEE Transactions on Vehicular Technology, Vol. 37, No. 4, 213-219, 1988.
doi:10.1109/25.31126

5. Shi, X.-Y. and J.-C. Liu, "Actual measurement and evaluation of electromagnetic environment for the moving maglev train," 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, 2020.

6. Shao, J., Y. Wen, and G. Wang, "Magnetic field analysis of linear motor for high-speed maglev train," 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 1-4, 2020.

7. Zhang, J., L. Xing, D. Zhang, and J. Xiao, "Modeling and simulation for electromagnetic emission of maglev train," 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), 2019.

8. Wang, Y. and Y. Wen, "Electromagnetic emission of maglev vehicle by linear synchronous motor," 2019 IEEE 3rd International Electrical and Energy Conference (CIEEC), 1507-1512, 2019.
doi:10.1109/CIEEC47146.2019.CIEEC-2019544

9. Ala, G., M. C. Di Piazza, G. Tine, F. Viola, and G. Vitale, "Numerical simulation of radiated EMI in 42 V electrical automotive architectures," IEEE Transactions on Magnetics, Vol. 42, No. 4, 879-882, 2006.
doi:10.1109/TMAG.2006.871440

10. Borgeest, K., "Practical papers, articles and application notes: EMC aspects of car communication systems," IEEE Electromagnetic Compatibility Magazine, Vol. 1, No. 1, 35-41, 2012.
doi:10.1109/MEMC.2012.6244943

11. Chiqovani, G., I. Oganezova, G. Gabriadze, M. Kuehn, M. Messer, and R. Jobava, "Radiation of low frequency magnetic field from high voltage powertrain systems of electric vehicles," 2019 International Symposium on Electromagnetic Compatibility --- EMC Europe, 968-971, 2019.
doi:10.1109/EMCEurope.2019.8872132

12. Li, C., J. Lin, J. Lei, T. Wu, D. Qi, and R. Chen, "Dosimetry assessment for human exposure to extremely low frequency magnetic fields in the electric vehicles," 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), 1-4, 2018.

13. He, Y., W. Sun, P. S. W. Leung, T. Y. M. Siu, and K. T. Ng, "Impact on human exposure to low frequency radiation with psychological and brainwave changes," 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compat, 936-939, 2018.
doi:10.1109/ISEMC.2018.8393920

14. Karabetsos, E., E. Kalampaliki, and D. Koutounidis, "Testing hybrid technology cars: Static and extremely low-frequency magnetic field measurements," IEEE Vehicular Technology Magazine, Vol. 9, No. 4, 34-39, 2014.
doi:10.1109/MVT.2014.2360651

15. Igarashi, A., K. Kobayashi, H. Matsuki, G. Endo, and A. Haga, "Evaluation of damage in dna molecules resulting from very-low-frequency magnetic fields by using bacterial mutation repairing genetic system," IEEE Transactions on Magnetics, Vol. 41, No. 11, 4368-4370, 2005.
doi:10.1109/TMAG.2005.854837

16. Nishizawa, S., H.-O. Ruoss, F. M. Landstorfer, and O. Hashimoto, "Numerical study on an equivalent source model for inhomogeneous magnetic field dosimetry in the low-frequency range," IEEE Transactions on Biomedical Engineering, Vol. 51, No. 4, 612-616, 2004.
doi:10.1109/TBME.2004.824129

17. Gao, X. and D. Su, "Suppression of a certain vehicle electrical field and magnetic field radiation resonance point," IEEE Transactions on Vehicular Technology, Vol. 67, No. 1, 226-234, 2018.
doi:10.1109/TVT.2017.2777901

18. Ala, G., M. C. Di Piazza, G. Tine, F. Viola, and G. Vitale, "Evaluation of radiated EMI in 42-V vehicle electrical systems by FDTD simulation," IEEE Transactions on Vehicular Technology, Vol. 56, No. 4, 1477-1484, 2007.
doi:10.1109/TVT.2007.896964

19. Xu, B., Y. Yu, X. Du, L. Xiao, and C. Wang, "On the modeling of a DC motor in electric vehicle's EMC studies," 2019 International Symposium on Antennas and Propagation (ISAP), 1-3, 2019.

20. Barzegaran, M. R., A. Sarikhani, and O. A. Mohammed, "An equivalent source model for the study of radiated electromagnetic fields in multi-machine electric drive systems," 2011 IEEE International Symposium on Electromagnetic Compatibility, 442-447, 2011.
doi:10.1109/ISEMC.2011.6038352

21. Zhao, H., C. Li, Z. Chen, and J. Hu, "Fast simulation of vehicular antennas for V2X communication using the sparse equivalent source model," IEEE Internet of Things Journal, Vol. 6, No. 4, 7038-7047, 2019.
doi:10.1109/JIOT.2019.2913659

22. Sarkar, T. K. and A. Taaghol, "Near-field to near/far-field transformation for arbitrary near-field geometry utilizing an equivalent electric current and MoM," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 3, 566-573, 1999.
doi:10.1109/8.768793

23. Wen, J., L. Ding, Y.-L. Zhang, and X.-C. Wei, "Equivalent electromagnetic hybrid dipole based on cascade-forward neural network to predict near-field magnitude of complex environmental radiation," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 5, 227-234, 2020.
doi:10.1109/JMMCT.2020.3027899

24. Kiaee, A., R. Patton, R. R. Alavi, B. Alavikia, R. Mirzavand, and P. Mousavi, "First-order correction and equivalent source reconstruction assessment for practical multiplane magnetic near-field measurements," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 8, 6479-6482, 2020.
doi:10.1109/TAP.2020.2985449

25. Alvarez, Y., F. Las-Heras, and M. R. Pino, "Reconstruction of equivalent currents distribution over arbitrary three-dimensional surfaces based on integral equation algorithms," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3460-3468, 2007.
doi:10.1109/TAP.2007.910316

26. Xu, Z., B. Ravelo, O. Maurice, J. Gantet, and N. Marier, "Radiated EMC Kron's model of 3-D multilayer pcb aggressed by broadband disturbance," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 2, 406-414, 2020.
doi:10.1109/TEMC.2019.2901670

27. Alavi, R. R., R. Mirzavand, A. Kiaee, R. Patton, and P. Mousavi, "Detection of the defective vias in siw circuits from single/array probe(s) data using source reconstruction method and machine learning," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 9, 3757-3770, 2019.
doi:10.1109/TMTT.2019.2931298

28. Li, P. and L. J. Jiang, "Source reconstruction method-based radiated emission characterization for PCBs," IEEE Transactions on Electromagnetic Compatibility, Vol. 55, No. 5, 933-940, 2013.
doi:10.1109/TEMC.2012.2235837

29. Zhang, J. and J. Fan, "Source reconstruction for IC radiated emissions based on magnitude-only near-field scanning," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 2, 557-566, 2017.
doi:10.1109/TEMC.2016.2638760

30. Barzegaran, M. R. and O. A. Mohammed, "3-D FE wire modeling and analysis of electromagnetic signatures from electric power drive components and systems," IEEE Transactions on Magnetics, Vol. 49, No. 5, 1937-1940, 2013.
doi:10.1109/TMAG.2013.2243716

31. Isernia, T., G. Leone, and R. Pierri, "Radiation pattern evaluation from near-field intensities on planes," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 5, 701, 1996.
doi:10.1109/8.496257

32. Sarikhani, A., M. Barzegaran, and O. A. Mohammed, "Optimum equivalent models of multi-source systems for the study of electromagnetic signatures and radiated emissions from electric drives," IEEE Transactions on Magnetics, Vol. 48, No. 2, 1011-1014, 2012.
doi:10.1109/TMAG.2011.2173794

33. Yu, Y., X. Du, B. Xu, C. Wang, L. Xiao, and Z. Zhang, "Equivalent motor radiation of an electric vehicle based on neural network approach," 2019 International Symposium on Antennas and Propagation (ISAP), 1-3, 2019.

34. Hansen, J. E., Spherical Near-field Antenna Measurements, P. Peregrinus on behalf of the Institution of Electrical Engineers, 1988.
doi:10.1049/PBEW026E

35. Rengarajan, S. R. and Y. Rahmat-Samii, "The field equivalence principle: Illustration of the establishment of the non-intuitive null fields," IEEE Antennas and Propagation Magazine, Vol. 42, No. 4, 122-128, 2000.
doi:10.1109/74.868058