1. Liao, Z., J. Yue, and G. Lin, "Application research of hts linear motor based on halbach array in high speed maglev system," IEEE Transactions on Applied Superconductivity, Vol. 31, No. 5, 1-7, 2021.
doi:10.1109/TASC.2021.3057836
2. Wang, H., J. Li, R. Qu, J. Lai, H. Huang, and H. Liu, "Study on high efficiency permanent magnet linear synchronous motor for maglev," IEEE Transactions on Applied Superconductivity, Vol. 28, No. 3, 1-5, 2018.
3. Glatzel, K., G. Khurdok, and D. Rogg, "The development of the magnetically suspended transportation system in the Federal Republic of Germany," IEEE Transactions on Vehicular Technology, Vol. 29, No. 1, 3-17, 1980.
doi:10.1109/T-VT.1980.23816
4. Boldea, I., A. Trica, G. Papusoiu, and S. A. Nasar, "Field tests on a maglev with passive guideway linear inductor motor transportation system," IEEE Transactions on Vehicular Technology, Vol. 37, No. 4, 213-219, 1988.
doi:10.1109/25.31126
5. Shi, X.-Y. and J.-C. Liu, "Actual measurement and evaluation of electromagnetic environment for the moving maglev train," 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, 2020.
6. Shao, J., Y. Wen, and G. Wang, "Magnetic field analysis of linear motor for high-speed maglev train," 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 1-4, 2020.
7. Zhang, J., L. Xing, D. Zhang, and J. Xiao, "Modeling and simulation for electromagnetic emission of maglev train," 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), 2019.
8. Wang, Y. and Y. Wen, "Electromagnetic emission of maglev vehicle by linear synchronous motor," 2019 IEEE 3rd International Electrical and Energy Conference (CIEEC), 1507-1512, 2019.
doi:10.1109/CIEEC47146.2019.CIEEC-2019544
9. Ala, G., M. C. Di Piazza, G. Tine, F. Viola, and G. Vitale, "Numerical simulation of radiated EMI in 42 V electrical automotive architectures," IEEE Transactions on Magnetics, Vol. 42, No. 4, 879-882, 2006.
doi:10.1109/TMAG.2006.871440
10. Borgeest, K., "Practical papers, articles and application notes: EMC aspects of car communication systems," IEEE Electromagnetic Compatibility Magazine, Vol. 1, No. 1, 35-41, 2012.
doi:10.1109/MEMC.2012.6244943
11. Chiqovani, G., I. Oganezova, G. Gabriadze, M. Kuehn, M. Messer, and R. Jobava, "Radiation of low frequency magnetic field from high voltage powertrain systems of electric vehicles," 2019 International Symposium on Electromagnetic Compatibility --- EMC Europe, 968-971, 2019.
doi:10.1109/EMCEurope.2019.8872132
12. Li, C., J. Lin, J. Lei, T. Wu, D. Qi, and R. Chen, "Dosimetry assessment for human exposure to extremely low frequency magnetic fields in the electric vehicles," 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), 1-4, 2018.
13. He, Y., W. Sun, P. S. W. Leung, T. Y. M. Siu, and K. T. Ng, "Impact on human exposure to low frequency radiation with psychological and brainwave changes," 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compat, 936-939, 2018.
doi:10.1109/ISEMC.2018.8393920
14. Karabetsos, E., E. Kalampaliki, and D. Koutounidis, "Testing hybrid technology cars: Static and extremely low-frequency magnetic field measurements," IEEE Vehicular Technology Magazine, Vol. 9, No. 4, 34-39, 2014.
doi:10.1109/MVT.2014.2360651
15. Igarashi, A., K. Kobayashi, H. Matsuki, G. Endo, and A. Haga, "Evaluation of damage in dna molecules resulting from very-low-frequency magnetic fields by using bacterial mutation repairing genetic system," IEEE Transactions on Magnetics, Vol. 41, No. 11, 4368-4370, 2005.
doi:10.1109/TMAG.2005.854837
16. Nishizawa, S., H.-O. Ruoss, F. M. Landstorfer, and O. Hashimoto, "Numerical study on an equivalent source model for inhomogeneous magnetic field dosimetry in the low-frequency range," IEEE Transactions on Biomedical Engineering, Vol. 51, No. 4, 612-616, 2004.
doi:10.1109/TBME.2004.824129
17. Gao, X. and D. Su, "Suppression of a certain vehicle electrical field and magnetic field radiation resonance point," IEEE Transactions on Vehicular Technology, Vol. 67, No. 1, 226-234, 2018.
doi:10.1109/TVT.2017.2777901
18. Ala, G., M. C. Di Piazza, G. Tine, F. Viola, and G. Vitale, "Evaluation of radiated EMI in 42-V vehicle electrical systems by FDTD simulation," IEEE Transactions on Vehicular Technology, Vol. 56, No. 4, 1477-1484, 2007.
doi:10.1109/TVT.2007.896964
19. Xu, B., Y. Yu, X. Du, L. Xiao, and C. Wang, "On the modeling of a DC motor in electric vehicle's EMC studies," 2019 International Symposium on Antennas and Propagation (ISAP), 1-3, 2019.
20. Barzegaran, M. R., A. Sarikhani, and O. A. Mohammed, "An equivalent source model for the study of radiated electromagnetic fields in multi-machine electric drive systems," 2011 IEEE International Symposium on Electromagnetic Compatibility, 442-447, 2011.
doi:10.1109/ISEMC.2011.6038352
21. Zhao, H., C. Li, Z. Chen, and J. Hu, "Fast simulation of vehicular antennas for V2X communication using the sparse equivalent source model," IEEE Internet of Things Journal, Vol. 6, No. 4, 7038-7047, 2019.
doi:10.1109/JIOT.2019.2913659
22. Sarkar, T. K. and A. Taaghol, "Near-field to near/far-field transformation for arbitrary near-field geometry utilizing an equivalent electric current and MoM," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 3, 566-573, 1999.
doi:10.1109/8.768793
23. Wen, J., L. Ding, Y.-L. Zhang, and X.-C. Wei, "Equivalent electromagnetic hybrid dipole based on cascade-forward neural network to predict near-field magnitude of complex environmental radiation," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 5, 227-234, 2020.
doi:10.1109/JMMCT.2020.3027899
24. Kiaee, A., R. Patton, R. R. Alavi, B. Alavikia, R. Mirzavand, and P. Mousavi, "First-order correction and equivalent source reconstruction assessment for practical multiplane magnetic near-field measurements," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 8, 6479-6482, 2020.
doi:10.1109/TAP.2020.2985449
25. Alvarez, Y., F. Las-Heras, and M. R. Pino, "Reconstruction of equivalent currents distribution over arbitrary three-dimensional surfaces based on integral equation algorithms," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3460-3468, 2007.
doi:10.1109/TAP.2007.910316
26. Xu, Z., B. Ravelo, O. Maurice, J. Gantet, and N. Marier, "Radiated EMC Kron's model of 3-D multilayer pcb aggressed by broadband disturbance," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 2, 406-414, 2020.
doi:10.1109/TEMC.2019.2901670
27. Alavi, R. R., R. Mirzavand, A. Kiaee, R. Patton, and P. Mousavi, "Detection of the defective vias in siw circuits from single/array probe(s) data using source reconstruction method and machine learning," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 9, 3757-3770, 2019.
doi:10.1109/TMTT.2019.2931298
28. Li, P. and L. J. Jiang, "Source reconstruction method-based radiated emission characterization for PCBs," IEEE Transactions on Electromagnetic Compatibility, Vol. 55, No. 5, 933-940, 2013.
doi:10.1109/TEMC.2012.2235837
29. Zhang, J. and J. Fan, "Source reconstruction for IC radiated emissions based on magnitude-only near-field scanning," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 2, 557-566, 2017.
doi:10.1109/TEMC.2016.2638760
30. Barzegaran, M. R. and O. A. Mohammed, "3-D FE wire modeling and analysis of electromagnetic signatures from electric power drive components and systems," IEEE Transactions on Magnetics, Vol. 49, No. 5, 1937-1940, 2013.
doi:10.1109/TMAG.2013.2243716
31. Isernia, T., G. Leone, and R. Pierri, "Radiation pattern evaluation from near-field intensities on planes," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 5, 701, 1996.
doi:10.1109/8.496257
32. Sarikhani, A., M. Barzegaran, and O. A. Mohammed, "Optimum equivalent models of multi-source systems for the study of electromagnetic signatures and radiated emissions from electric drives," IEEE Transactions on Magnetics, Vol. 48, No. 2, 1011-1014, 2012.
doi:10.1109/TMAG.2011.2173794
33. Yu, Y., X. Du, B. Xu, C. Wang, L. Xiao, and Z. Zhang, "Equivalent motor radiation of an electric vehicle based on neural network approach," 2019 International Symposium on Antennas and Propagation (ISAP), 1-3, 2019.
34. Hansen, J. E., Spherical Near-field Antenna Measurements, P. Peregrinus on behalf of the Institution of Electrical Engineers, 1988.
doi:10.1049/PBEW026E
35. Rengarajan, S. R. and Y. Rahmat-Samii, "The field equivalence principle: Illustration of the establishment of the non-intuitive null fields," IEEE Antennas and Propagation Magazine, Vol. 42, No. 4, 122-128, 2000.
doi:10.1109/74.868058