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Abstract—An equivalent source model based on neural network is proposed to rapidly estimate the
magnetic radiation characteristics of linear synchronous motor (LSM) in electromagnetic suspension
(EMS) maglev system. The equivalent source is composed of electric dipoles and a closed three-
dimensional (3-D) surface, and is developed in terms of source reconstruction method. A few sampling
data of magnetic field simulation results serve as the input information to determine the unknown current
distribution on equivalent source model. To solve the inverse radiation problem and characterize the
whole radiation pattern with high efficiency, the current distribution signature of equivalent model is
fitted into artificial neural network models. Separate neural network models are fitted under different
phases of winding excitation, which enables the low-frequency magnetic field estimation under both
3-phase balanced operation and unbalanced operation. The equivalent source model is extended to
estimate LSM radiation in multi-source environment, and the comparison with numerical simulation
verifies its accuracy and efficiency.

1. INTRODUCTION

Long stator linear synchronous motor is the driving force supply and electrical power supply for high-
speed EMS maglev train [1–4]. When the three-phase windings embedded in LSM stator are powered
up by high driving current, LSM establishes an electromagnetic (EM) field and renders itself a major
radiation emission source in maglev system [5]. As LSM operates at a frequency range under 400Hz,
its low-frequency magnetic radiation attracts more attention among researchers. It is reported in [6]
that the radiated low-frequency magnetic field of LSM would interfere with sensing devices mounted
under train body. [7] and [8] evaluate the electromagnetic environment of maglev system with various
operating conditions of LSM, which indicate that the magnetic radiation of LSM with short-phase fault
is nearly 10 times larger than that under normal operating condition. Similar to maglev system, other
vehicular systems driven by three-phase motor are facing the similar electromagnetic compatibility
(EMC) problem. [9] and [10] both mention cases on motor radiation emission interference with the
normal operation of on-board signal receivers and electronic devices. Meanwhile, as a symbol of
enhancing public health awareness, biomedical effects of low-frequency magnetic exposure caused by
electrical devices become an subject of intense scholarly discussion [11–16]. Unlike traditional motor
devices, LSM stator installed along maglev route is not enclosed in metal shell or train body during
operating, which makes surrounding equipment and living organisms directly exposed to its radiation
field. As a result, the evaluation of LSM radiation should be carefully considered both for sensitive
equipment protection and human healthcare at maglev vehicle design stage.
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However, due to the lack of effective analysis method, researches on radiation emission of motor
devices and motor drive systems are relatively few [17]. As the standard experimental procedures to
assess motor radiation characteristics are expensive and maintenance-extensive [18], it is not practical
to adopt measurement method in estimating motor radiation at EMC design stage. Another common
method to estimate motor radiation is using electromagnetic field numerical calculation method [9, 19].
Numerical method is capable to calculate the radiated characteristics of motor devices with any
operating condition in any environment. However when multi-source environment and large-scale
computational region are involved, the motor’s complex structure causes a long computation time and
large memory footprint to numerical computation process [20]. Hence, some researchers make attempts
to simplify motor structure using source reconstruction method and to further reduce the complexity
of EM computation.

Source reconstruction method is widely used in antenna diagnosis and near-field-to-far-field (NF-
FF) transformation [21, 22], and further applied in realms of EMC to predict the radiation field at
arbitrary distance from the radiating source [23–25]. The underlying idea of source reconstruction
method is to replicate the radiation characteristics of a complex radiating system with a simplified
model composed of a set of equivalent sources. The current distribution of equivalent source can be
determined by solving the Inverse Radiation Problem (IRP) with the observed near-field characteristics
of original source as a known factor. Hence the equivalent source could be constructed, and the far-field
radiation could be estimated. Inspired by its high precision in reproducing complete electromagnetic
characteristics, this method is applied to the equivalent source modelling of electrical and electronic
devices in a number of papers [26–30]. However, numerically, the IRP can be formulated as a system
of linear integral equations. The solving process of the complex linear system is always a challenge
in practice. To overcome these drawbacks, a number of optimization based techniques to reduce the
computational cost of IRP are developed [31]. In [32], a simplified wire model is developed in simulation
software for reproducing the far-field electromagnetic radiation of an actual motor machine. Serving
the observed magnetic field of detailed geometric models as the input information of IRP, the unknown
current on each wire of simplified wire model is solved by Particle Swarm Optimization (PSO). However,
the number of the unknown factors in Swarm Intelligence Algorithm is often strictly limited due to the
complex searching procedure, which limits the optimal performance of equivalent source model.

In recent years, developments in artificial neural network platform provide us with a more efficient
way of data modelling. Several studies on neural network applications prove that a fairly simple artificial
neural network could achieve satisfying accuracy in predicting EMC problems. In [33], a dipole is
employed to replace motor devices in vehicle models to reduce computation time in motor radiation
simulation. The establishment process of this dipole model does not involve any physical principle,
and the relationship between the dipole size and excitation and its electric field intensity at a certain
observation point is directly established through the neural network. This dipole model is reported
to be capable to approximate the motor’s radiation characteristics with high efficiency. However, the
oversimplified modelling process makes the dipole model lack flexibility in estimating motor radiation
neither on arbitrary observing area nor in other operation condition.

The aim of this paper is to implement rapid evaluation of LSM low-frequency magnetic radiated
characteristics with various working conditions. Therefore, we make use of a high-efficient neural
network platform to propose a neural-network-based source reconstruction method for reproducing LSM
radiation. To balance the cost efficiency and accuracy of the equivalent model, the stator windings and
stator core are modelled as separate equivalent source components. The separate source components
enable motor radiation estimation under three-phase balanced condition as well as short-phase fault
condition. To reduce the difficulty of source reconstruction process, we employ neural networks for an
efficient and accurate solution to Inverse Radiation Problem. In Section 2, we illustrate our methodology
to replicate single-segment-length LSM radiation with equivalent model and present corresponding
neural-network-based Inverse Radiation Problem. In Section 3, neural networks are developed and
trained to produce an equivalent LSM model. The performance of equivalent LSM model is further
evaluated and compared with numerical simulation results. Finally, Section 4 gives our conclusion.
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2. METHODOLOGY

For the purpose of rapid evaluation of LSM radiation, we propose the neural-network based source
reconstruction method by following steps: Firstly, we consider LSM as separate source components and
analyze the relationship between each source component and overall radiated EM field of LSM. Then, an
equivalent LSM model is developed with part of its electrical parameters undetermined. By presenting
the radiated characteristics of LSM using unknown parameters of equivalent model, an Inverse Radiation
Problem is drawn. Finally, we employ a small number of numerical simulation results as known factor
of IRP and embed neural networks in IRP solution. With the above steps, neural networks containing
information of equivalent model electrical parameters could be trained and applied to LSM radiated
characteristics prediction. The detailed illustration of each step is as follows.

2.1. LSM Radiation Analysis

In practical maglev system, for easy installation and maintenance, LSM core is divided into small
segments and installed one by one with a gap of a few centimeters between them. Thus, LSM stator
exhibits a repetitive structural characteristic with segment length determined by stator core installation.
Hereby, in numerical simulation process, the single repeating unit of LSM is normally employed to
evaluate its radiated characteristics with infinite-length by adopting master-slave boundary condition.
In this paper, we firstly build our equivalent model with single segment length and further extend it to
an infinite-length model. The single-segment-length numerical simulation model and equivalent LSM
model are shown in Fig. 1.

Figure 1. Geometric stator model and proposed equivalent source model.

As shown in Fig. 1, the electromagnetic wave generated by stator winding would be incident on
stator core and further excite a radiated field. This field could be regarded as a secondary radiation
result by reflection, refraction, and diffraction of EM wave on stator core. Therefore, at any given
position in free space, the radiated field of LSM stator is formed by the directly incident wave generated
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by stator windings and the secondary radiated wave generated by stator core. As the three different
phases of motor windings could be treated as three incoherent sources, the radiated characteristics of
each winding could be computed separately, and the stator radiated field could be regarded as the
superposition of the radiated field excited by each phase of winding. Therefore, at position r, the total
radiated magnetic field H′ of stator model could be described as:

H′(r) = [p1 p2 p3]

 Hinc′
1 (r) +Hsec′

c,1 (r)

Hinc′
2 (r) +Hsec′

c,2 (r)

Hinc′
3 (r) +Hsec′

c,3 (r)

 . (1)

where Hinc′
m (m = 1, 2, 3) denotes the directly incident magnetic field generated by each winding on

r, and Hsec′
c,m (m = 1, 2, 3) denotes the secondary radiated field of stator core excited by each winding.

P = [p1, p2, p3] is a coefficient matrix representing the operating condition of the motor. pm (m = 1, 2,
3) is set to 1 when the corresponding winding is normally excited while it is set to 0 when the winding
is default. By introducing coefficient matrix P, it is possible to analyze LSM radiation under normal
operating condition (p1 = p2 = p3 = 1) as well as short-phase fault condition (p1 or p2 or p3 = 0).

2.2. IRP in Equivalent Source Modelling

In this paper, we treat the stator core as a radiation source whose radiated characteristics are directly
related to the winding radiation. Therefore, the stator windings and stator core are reconstructed as
different components with quantitative relationship. As shown in Fig. 1, we regard the curved stator
windings as three poly-lines formed by short electric dipoles, which is Lm (m = 1, 2, 3) corresponding
to each phase of winding. For the dipoles along each poly-lines, the current value Jm (m = 1, 2, 3) is
equal to the actual current on corresponding stator winging. Define r′m (m = 1, 2, 3) as the position
vector of points on stator windings, L′

m (m = 1, 2, 3) as the unobscured part of Lm (m = 1, 2, 3) by
stator core to r. Then it is straightforward to formulate the integral relationship between the winding
current Jm (m = 1, 2, 3) and the magnetic field Hinc′

m (m = 1, 2, 3) corresponding to each winding
source:

Hinc′
m (r) = ∇×

∫
L′
m

Jm(rm)g(r, rm)drm m = 1, 2, 3. (2)

where g(r, rm) (m = 1, 2, 3) is the free-space Green’s function and is defined as:

g(r, rm) =
1

4π | r− rm |
ejk|r−rm| m = 1, 2, 3. (3)

The actual stator is complex in terms of geometry. As shown in Fig. 1, we design a 3-D surface
model S based on the Source Reconstruction Method to replicate radiated characteristics of stator
core. By means of Love’s and Schelkunoff’s Field Equivalence Principle, it is possible to simplify the
reconstruction procedure by considering only one class of equivalent current [34]. An application case of
Schelkunoff’s Field Equivalence Principle is explained in Fig. 2. Region I (z < z0) envelops the original
source at z = −∞, and the equivalent currents are distributed on boundary surface z = z0. Region I
could be filled up with perfect magnetic conductor (PMC) without affecting the electromagnetic fields

Figure 2. Schelkunoff’s field equivalence principle.
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in both regions, allowing us to take only electric currents into account J′
eq over the source domain.

Invoke the Imagine Theory, the field produced by the electric currents J′
eq on the region boundary can

be obtained, which is twice as much electric equivalent current as in normal case.
In our case, following the Schelkunoff’s Field Equivalence Principle, the surface model S is defined

as a cuboid perfect magnetic conductor in a similar size to stator core. As the surface current on
cubic surface model is inducted by stator windings radiation, we regard the total surface current as
the superposition of the inducted currents corresponding to each winding. Therefore, assume that the
current density on the equivalent core model is Jc,m (m = 1, 2, 3). Then the scattered field Hsec′

m
(m = 1, 2, 3) generated by equivalent core model on r could be described as:

Hsec′
c,m(r) = ∇×

∫
S
Jc,m(rc)g(r, rc)drc m = 1, 2, 3. (4)

where

g(r, rc) =
1

4π | r− rc |
ejk|r−rc| m = 1, 2, 3. (5)

Then an Inverse Radiation Problem involving the current distribution on S is formulated. When
Jc,m (m = 1, 2, 3) is given, the total magnetic field at r could be obtained according to Eqs. (1), (2),
and (4).

2.3. Neural-Network Based IRP Solution

As the equivalent model attempts to implement the same precision in evaluating LSM radiated
characteristics with numerical simulation model, the simulation results could be used as a known factor
for IRP. DefineH as the simulated magnetic field results, then the secondary radiated fieldHsec′

m (m = 1,
2, 3) is: 

∇×
∫
S
Jc,1(rc)g(r, rc)drc

∇×
∫
S
Jc,2(rc)g(r, rc)drc

∇×
∫
S
Jc,3(rc)g(r, rc)drc

 = P−1 ·H(r)−



∇×
∫
L′
1

J1(r1)g(r, r1)dr1

∇×
∫
L′
2

J2(r2)g(r, r2)dr2

∇×
∫
L′
3

J3(r3)g(r, r3)dr3


. (6)

where

H(r) = P ·

 H1(r)

H2(r)

H3(r)

 . (7)

and Hm (m = 1, 2, 3) denotes the simulated magnetic radiation under each phase of excitation. Instead
of solving the current density Jc,m (m = 1, 2, 3) specifically, we use an artificial neural network netm(·)
(m = 1, 2, 3) to map Jc,m (m = 1, 2, 3) and its mathematical relation with the right side of Eq. (6).
In order to fit the neural network model of each phase of winding excitation separately, we define P as
[1, 0, 0], [0, 1, 0], and [0, 0, 1] to obtain 3 sets of training data corresponding to each phase of winding
excitation. As shown in Fig. 3, make the Green’s function corresponding to a group of observing
points as the input matrix of an artificial neural network, and the right side of Eq. (6) corresponding
to each observing point as the target output matrix. Then we obtain each phase’s IRP solution with
neural network model embedded in. With this solution, it is capable to estimate LSM radiation on any
observing point or observing face. The radiated magnetic field of stator model on r is hereby represented
as:

H′(r) = P ·

 Hinc′
1 (r) + net1(r)

Hinc′
2 (r) + net2(r)

Hinc′
3 (r) + net3(r)

 . (8)

By computing the radiated characteristics on certain observing points with appropriate step size,
the full radiation pattern of LSM observing area could be fitted.
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Figure 3. The overall structure of source reconstruction based on neural network.

3. APPLICATION AND VALIDATION

3.1. Fast Implementation

The modelling procedure discussed in Section 2 presents the neural-network-based source reconstruction
method to reproduce the transient radiated electromagnetic field of LSM, and it could be further
simplified in application to achieve higher computation efficiency.

The excitation current frequency of LSM is directly related to the running speed of vehicles:

v = 2fτp. (9)

where v denotes the vehicle running speed, f the current frequency of stator winding, and τp the stator
pole pitch. In practical, τp = 258mm in high-speed maglev. Thus, to power a maglev train with
a maximum velocity of 600 km/h, the LSM excitation current frequency is normally in the range of
hundreds of Hertz.

When LSM radiation is evaluated within a distance range of tens or even hundreds of meters, the
excitation current wavelength λ is sufficiently large compared with the length of stator winding and
calculation region. As a result, the phase of the excitation current distributed on stator winding could
be regarded as undifferentiated. When the LSM radiation in surrounding area is computed, | r − rm |
and | r − rc | are minimal in scale compared to wavelength λ, which also indicates that the sinusoidal
electromagnetic field excited by LSM has sufficiently low time variations in the computing region. Thus,
the radiated electromagnetic field of LSM in the surrounding area could be regarded as a quasi-static
field, which means that the transient spatial pattern of LSM radiated magnetic field has the same
characteristics as the corresponding magnetostatic field but varies with time [35]. Thus at time t, the

scattered field Hsec′
m (m = 1, 2, 3) represented by Eq. (6) could be expressed as:


∇×

∫
S

Jc,1(rc)

4π|r− rc|
ej(ωt+φ1)drc

∇×
∫
S

Jc,2(rc)

4π|r− rc|
ej(ωt+φ2)drc

∇×
∫
S

Jc,3(rc)

4π|r− rc|
ej(ωt+φ3)drc


= P−1 ·H(r; t)−



∇×
∫
L′
1

J1(r1)

4π|r− r1|
ej(ωt+φ1)dr1

∇×
∫
L′
2

J2(r2)

4π|r− r2|
ej(ωt+φ2)dr2

∇×
∫
L′
3

J3(r3)

4π|r− r3|
ej(ωt+φ3)dr3


. (10)

where φ1, φ2, and φ3 are the initial phases of corresponding excitation winding. To further reduce
computational complexity, we divide equivalent core model surface into small rectangle meshes. Assume
that the mesh quantity is N and that the current on each rectangle mesh is uniformly distributed. The
area and current density under each phase excitation of the nth mesh are defined as Sn and Jc

m,n. Then
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Eq. (10) could be rewritten as:

N∑
n=1

∫
Sn

Jc
1,n(rc)× (r− rc)

4π|r− rc|3
ej(ωt+φ1)drc

N∑
n=1

∫
Sn

Jc
2,n(rc)× (r− rc)

4π|r− rc|3
ej(ωt+φ2)drc

N∑
n=1

∫
Sn

Jc
3,n(rc)× (r− rc)

4π|r− rc|3
ej(ωt+φ3)drc


= P−1·H(r; t)−



∇×
∫
L′
1

J1(r1)

4π|r− r1|
ej(ωt+φ1)dr1

∇×
∫
L′
2

J2(r2)

4π|r− r2|
ej(ωt+φ2)dr2

∇×
∫
L′
3

J3(r3)

4π|r− r3|
ej(ωt+φ3)dr3


. (11)

In practical calculation process, we establish the equivalent model in rectangular coordinate system.
Then, for the modelling process under each phase current excitation, it needs to be represented by three
vectorial components in the x, y, and z directions:

N∑
n=1

∫
Sn

Jc
m,n,y(rc) · (rz − rc,z)

4π|r− rc|3
ej(ωt+φm)drc,x

=Hm,x(r; t)−∇×
∫
L′
m

Jm,x(rm)

4π|r− rm|
ej(ωt+φm)drm,x

N∑
n=1

∫
Sn

Jc
m,n,z(rc) · (rx − rc,x)

4π|r− rc|3
ej(ωt+φm)drc,y

=Hm,y(r; t)−∇×
∫
L′
m

Jm,y(rm)

4π|r− rm|
ej(ωt+φm)drm,y

N∑
n=1

∫
Sn

Jc
m,n,x(rc) · (ry − rc,y)

4π|r− rc|3
ej(ωt+φm)drc,z

=Hm,z(r; t)−∇×
∫
L′
m

Jm,z(rm)

4π|r− rm|
ej(ωt+φm)drm,z

m = 1, 2, 3. (12)

In Eq. (12), the vectors with footprint x, y, and z denote the vectorial components of a composite
vector in corresponding directions. For each single-phase-current excitation condition, define its
observing time t = (π/2 − φm)/ω (m = 1, 2, 3). So that the phase of each current excitation is

π/2, and ej(ωt+φm) = ej(0) = 1. Then in Eq. (12), the only unknown quantities are Jc
m,n,y, J

c
m,n,z, and

Jc
m,n,x, which are constant quantities in each corresponding integrating process. Therefore, replacing

the known items on left side and right side of Eq. (12) with function X and Y , Eq. (12) can be rewritten
as:

N∑
n=1

Jc
m,n,y(rc) ·Xm,n,x(r; t)|t=(π/2−φm)/ω = Ym,x(r; t)|t=(π/2−φm)/ω

N∑
n=1

Jc
m,n,z(rc) ·Xm,n,y(r; t)|t=(π/2−φm)/ω = Ym,y(r; t)|t=(π/2−φm)/ω

N∑
n=1

Jc
m,n,x(rc) ·Xm,n,z(r; t)||t=(π/2−φm)/ω = Ym,z(r; t)|t=(π/2−φm)/ω

m = 1, 2, 3. (13)

In accordance with Eq. (13), for each single-phase-current excitation condition, three neural
networks corresponding to three directional components need to be modelled. For instance, by
feeding X1,n,x(r; t)|t=(π/2−φ1)/ω (n = 1, 2, ..., N) into neural network model as input information, and

Y1,x(r; t)|t=(π/2−φ1)/ω as target output, the neural network netpeak1,x (r) corresponding to the peak value
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of the 1st phase sinusoidal-periodic excitation winding could be obtained. Then the total magnetic field
on r could be reconstructed by the trained neural networks as:

H′(r; t) = P ·



[
∇×

∫
L′
1

J1(r1)

4π|r− r1|
dr1 + netpeak1 (r)

]
ej(ωt+φ1)

[
∇×

∫
L′
2

J2(r2)

4π|r− r2|
dr2 + netpeak2 (r)

]
ej(ωt+φ2)

[
∇×

∫
L′
3

J3(r3)

4π|r− r3|
dr3 + netpeak3 (r)

]
ej(ωt+φ3)


. (14)

where:
netpeakm (r) = netpeakm,x (r) · i+ netpeakm,y (r) · j+ netpeakm,z (r) · k, m = 1, 2, 3. (15)

i, j, and k in Eq. (15) denote the unit vectors in x, y, and z directions, respectively. With the transient
magnetic field solution given by Eq. (14), the time-domain low-frequency magnetic field on r is presented,
and the frequency-domain representation could be decided according to Fourier transformation.

3.2. Neural Network Modelling

In this paper, Matlab R2020b is employed to proceed with the computation process and build neural
network models. In consideration of the feasibility of network models, we select back propagation neural
network (BPNN) to map the surface current signature on stator core. It could be noticed that the input
dimension of each neural network model is decided by mesh quantity N on equivalent core model,
while the output dimension is 1. According to the size of equivalent core model, we divide its surface
into 52 elements. To obtain training set for BPNN model, a numerical simulation model is built with
CST Studio Suite to obtain simulation results. The frequency and amplitude of excitation current of
numerical model are defined as 50Hz and 1A. The initial phases φm (m = 1, 2, 3) of each winding are
defined as 0, 2π/3, and 4π/3, respectively. Three separate simulations are carried out to obtain LSM
radiation characteristics under each single phase excitation.

As shown in Fig. 4, the observing planes for LSM radiation are located 3m apart from the top,
bottom, and sides of the stator model center. On each observing plane, simulation results are taken
as training data with a step size of 0.25m. Then, for each neural network to be trained, 2400 samples
are obtained as the training set (account for 70%), validation set (account for 15%), and testing set
(account for 15%).

For a BPNN model, its number of hidden layers is highly related to its ability to express nonlinear
problems. Normally, a BPNN with 2 hidden layers is capable to approximate any smooth mapping to
any accuracy. Thus, we define the number of hidden layers of BPNN models as 2. The structure of
each hidden layer could be decided in accordance with the following empirical formula:

Nh =
Ns

α · (Ni +No)
. (16)

where Nh denotes the number of neurons in hidden layers, Ns the number of samples in training set, and
Ni and No denote the numbers of neurons in input layer and output layer, respectively. α in Eq. (16)
is a customized variable which normally ranges from 2 to 10. In this paper, we define α = 4; therefore,
the number of hidden layers of each neural network models is decided as 12.

The developed neural networks are trained by Levenberg-Marquardt algorithm, and network
training processes are set to stop when generalization stops improving. The performances of trained
networks are evaluated using adjusted R-squared R2

adj . Adjusted R-squared R2
adj is the degree-of-

freedom adjusted coefficient of determination, which describes the proportionate amount of variation in
the response variables explained by the independent variables in the multiple linear regression. R2

adj is
defined as:

R2
adj = 1− SSE

TSS

a− 1

a− b− 1
. (17)
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Figure 4. Simulation model for obtaining training data.

where SSE denotes the sum of squares due to error, while TSS denotes the total sum of squares. a
denotes the quantity of sample data, and b is the quantity input variables. A value of 1 of R2

adj indicates
the network replicate of the surface current characteristics on stator core faultlessly. The overall adjusted
R-squares of trained neural networks netm(·) (m = 1, 2, 3) are 0.9665, 0.9380 and 0.9495, respectively.

To visualize the training results, we use the proposed neural-network-based (NN-based) method
to produce radiated patterns of LSM at 3-phase balanced condition on observing planes indicated in
Fig. 4. Feed the trained neural network models by input data of training sets, the actual output of
neural network models related to each observing point is obtained. Then, in accordance with Eq. (14),
LSM radiated magnetic characteristics on each observing point could be computed. The simulated
results and NN-based method results are compared in Fig. 5. The comparison indicates that there is
great consistency between numerical simulation results and the radiated pattern reconstructed by NN-
based model. The proposed model is capable of characterizing the overall magnetic field distribution
on observing planes, and its reconstruction performance on horizontal planes is higher than that on
vertical planes.

3.3. Validation of Method Efficiency

To further verify the efficiency of proposed NN-based model, we build a multi-source scenario to compare
the time consumption difference between numerical simulation and proposed model. In the actual
maglev system, LSM stator pairs are installed on both sides of maglev route at a distance of 2380mm.
The elevated maglev route is normally constructed at a relative altitude about a dozen meters to the
ground plane. Therefore, as shown in Fig. 6, we build a pair of stator units with ground plane in the
numerical simulation software. In both 3-phase balanced condition and short-phase fault condition, the
planar radiation characteristics with an area of 400m2 at 1m height are evaluated. The frequency and
amplitude of excitation current are 300Hz and 1800A, and the winding with initial phase φ1 = 0 in
left LSM model is defined as faulted phase in short-phase condition.

To solve the same case by proposed NN-based method, the ground plane is considered as a perfectly
conducting surface; therefore, reflected field by ground could be obtained according to Image Theory.
The field values on observing area are computed with a computation step of 1m.

The radiation patterns of NN-based model and numerical simulation are compared in Fig. 7. In
NN-based method’s patterns, the range of central high amplitude area is relatively larger than that in
numerical simulation patterns. However, in general, the NN-based method leads to a high degree of



228 Xing et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Magnetic flux density computation results of (a) numerical model and (b) NN-based
equivalent model on Z = 3m plane. Magnetic flux density computation results of (c) numerical model
and (d) NN-based equivalent model on Y = 3m plane. Magnetic flux density computation results of
(e) numerical model and (f) NN-based equivalent model on Z = −3m plane. Magnetic flux density
computation results of (g) numerical model and (h) NN-based equivalent model on Y = −3m plane.

Figure 6. Multi-source model built in numerical simulation software.

similarity towards simulation results in the variation trend of radiation and the overall pattern. The
Mean Absolute Percentage Error (MAPE) values between simulated results and computed results of
NN-based method in 3-phase balanced condition and fault condition are 7.11% and 4.95%. It could be
noticed that the MAPE of fault case is better than that of balanced case. As the error due to each
phase of NN-based method could accumulate in the calculation, it is logical to see better accuracy in
short-phase fault case.

A comparison of the computation efficiency of numerical simulation model and equivalent model
using the same PC is shown in Table 1. It is obvious that the time consumption as well as energy
consumption to obtain motor radiation pattern has seen a great reduction both in 3-phase balanced
operating condition and short-phase fault condition. In this case, as the time consumption of numerical
computation method largely depends on the size of computation region, while the time consumption
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Table 1. Time & energy consumption comparison between numerical simulation and NN-based method.

LSM condition
Time/energy consumption of

numerical simulation

Time/energy consumption of

NN-based model

Balanced 18256 s/0.406 kW·h 556 s/0.012 kW·h
Short-phase fault 18401 s/0.409 kW·h 452 s/0.009 kW·h

of proposed model fully depends on the quantity of observing points, the proposed model would
achieve far better computation effectiveness in evaluating the radiated pattern over long distance. The
calculation using the numerical simulation requires the PC to operate at full power, and the total
energy consumption is up to 0.4 kW·h. In contrast, the energy consumption of the PC is controlled
below 0.015 kW·h when the equivalent model is used, which greatly saves energy consumption and
computing resources.

In Table 2, we compare the performance of proposed model with prior similar equivalent source
models for motor radiation estimation. As the motor device in [33] is oversimplified into dipole model for
high computational efficiency, it lacks ability to estimate motor radiation in various operating condition.
The evaluation region of this NN-based dipole model is also restricted to one certain point. The
PSO-based model proposed in [32] is capable to characterize motor radiation pattern in multi-source
environment. However, as simplified wire structure is designed to reconstruct motor radiation in fixed
operating mode, the PSO-based model is nonfunctional in various operating condition evaluation. By

(a) (b)

(c) (d)

Figure 7. Magnetic flux density computation results of (a) numerical model and (b) NN-based
equivalent model in 3-phase balanced condition. Magnetic flux density computation results of (c)
numerical model and (d) NN-based equivalent model in short-phase fault condition.
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Table 2. Performance comparison with prior motor radiation estimation method.

Performance
NN-based

dipole model [33]

PSO-based

wire model [32]

Proposed

model

Multi-source

environment evaluation
Not introduced Capable Capable

Various operating

condition evaluation
Not introduced Not introduced Capable

Computational region Only on certain point 3-D space 3-D space

Accuracy comparing with

full numerical model

Satisfied

(Not quantified)

Satisfied

(Not quantified)

Satisfied

(MAPE = 7.11%

in normal condition

MAPE = 4.95%

in fault condition)

comparison, the proposed method moderately simplifies the LSM structure and develops separated
source components, which enable proposed NN-based model to reach satisfying accuracy when being
applied to multi-source radiation estimation in both normal operating condition and short-phase fault
condition.

4. CONCLUSION

In this paper, an equivalent source is proposed to replicate numerical simulation results and achieve
a rapid estimation of LSM radiation under different operating conditions. We develop the equivalent
source model following the basic concept of Source Reconstruction Method and embed neural networks
in solving equivalent model’s electrical parameters for a rapid computation. This neural-network-based
model is proved to be effective in estimating the long-frequency magnetic field impact of LSM with a
satisfying accuracy, while its time consumption is only 1/32 of the numerical simulation. In our future
work, further validation of the LSM equivalent model would be processed using actual measurement
data, and the proposed source reconstruction method would be expanded to equivalent source modelling
of similar motor devices for rapid evaluation purpose.
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