Vol. 113
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-07-07
Dual-Band Complementary Split-Ring Resonator Engraved Rectangular Monopole for GSM and WLAN/WiMAX /5G Sub-6 GHz Band (New Radio Band)
By
Progress In Electromagnetics Research C, Vol. 113, 251-263, 2021
Abstract
In this paper, a rectangular monopole antenna engraved with a complementary split-ring resonator is proposed for dual-band operation. The proposed antenna is fabricated on an FR4 substrate with a dimension of 20 x 34 x 1.6 mm3. The entire simulation is done using CST EM studio software. The proposed antenna exhibits dual-band operation from 1.78 GHz to 1.90 GHz and from 3.45 GHz to 6.58 GHz. The band from 1.78 GHz to 1.90 GHz is due to the inclusion of CSRR, and its corresponding bandwidth is 120 MHz. It is validated with the quasi-static analysis. The permittivity characteristics of the proposed CSRR are retrieved using the NRW method and presented. The resonant frequency of the band created by the CSRR is 1.83 GHz with -37.68 dB as its return loss values. The second wider band is due to the combination of the mode created by the CSRR along with the radiating patch from 3.45 GHz to 6.58 GHz with 3132 MHz which has a dual resonance at 3.65 GHz and 5.59 GHz with a return loss of -30.23 dB and -29.80 dB. The optimal values are chosen with the help of parametric analysis. The designed antenna is fabricated and measured. The measured results of return loss, gain, E-plane, and H-plane are compared with simulated results, and they are complying with each other. The dual-band operation, compact size, stable radiation pattern along with gain above 2.3 dBi in the whole resonating band make it suitable for the GSM and WLAN/WiMAX/5G Sub-6 GHz band (new radio band).
Citation
Samuel Prasad Jones Christydass, and Nagarajan Gunavathi, "Dual-Band Complementary Split-Ring Resonator Engraved Rectangular Monopole for GSM and WLAN/WiMAX /5G Sub-6 GHz Band (New Radio Band)," Progress In Electromagnetics Research C, Vol. 113, 251-263, 2021.
doi:10.2528/PIERC21052007
References

1. Liu, P., Y. Zou, B. Xie, X. Liu, and B. Sun, "Compact CPW-fed tri-band printed antenna with meandering split-ring slot for WLAN/WiMAX applications," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1242-1244, 2012.
doi:10.1109/LAWP.2012.2225402

2. Li, D. and J.-F. Mao, "Multiband multimode arched bow-shaped fractal helix antenna," Progress In Electromagnetics Research, Vol. 141, 47-78, 2013.
doi:10.2528/PIER13050903

3. Xu, P., Z.-H. Yan, and C. Wang, "Multiband modified fork-shaped monopole antenna with dual L-shaped parasitic plane," Electron. Lett., Vol. 47, No. 6, 364-365, 2011.
doi:10.1049/el.2010.3280

4. Baudha, S. and D. K. Vishwakarma, "Miniaturized dual broadband printed slot antenna with parasitic slot and patch," Microw. Opt. Technol. Lett., Vol. 56, No. 10, 2260-2265, 2014.
doi:10.1002/mop.28567

5. Chaurasia, P., B. K. Kanaujia, S. Dwari, and M. K. Khandelwal, "Design and analysis of seven-bands-slot-antenna with small frequency ratio for different wireless applications," AEU — International Journal of Electronics and Communications, Vol. 99, 100-109, 2019.
doi:10.1016/j.aeue.2018.11.036

6. Al-Tumah, W. A. G., R. M. Shaaban, and A. Tahir, "Design, simulation and measurement of triple band annular ring microstrip antenna based on shape of crescent moon," AEU — International Journal of Electronics and Communications, Vol. 117, 2020.

7. Shan, K., C. L. Ruan, and L. Peng, "Design of a novel planar ultrawideband antenna with 3.5 and 5.5 GHz dual band notched characteristics," Microw. Opt. Technol. Lett., Vol. 53, 370-375, 2011.
doi:10.1002/mop.25721

8. Iqbal, A., A. Bouazizi, O. A. Saraereh, A. Basir, and R. K. Gangwar, "Design of multiple band, meandered strips connected patch antenna," Progress In Electromagnetics Research Letters, Vol. 79, 51-57, 2018.
doi:10.2528/PIERL18082903

9. Basar, M. R., M. A. Hossain, M. R. U. Hoque, and K. M. Morshed, "Compact dual l-slit slotted antenna for spacecraft, WLAN, Wi-Fi, and bluetooth application," 2012 7th International Conference on Electrical & Computer Engineering (ICECE), 706-708, IEEE, 2012.
doi:10.1109/ICECE.2012.6471648

10. Liu, G., M. Fang, R. Zhi, J. Bai, and Z. Zeng, "Compact CPW-fed multiband antenna for TD-LTE/WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 65, 9-14, 2017.
doi:10.2528/PIERL16102203

11. Ran, X., Z. Yu, T. Xie, Y. Li, X. Wang, and P. Huang, "A novel dual-band binary branch fractal bionic antenna for mobile terminals," International Journal of Antennas and Propagation, Vol. 2020, Article ID 6109093, 9 pages, 2020, https://doi.org/10.1155/2020/6109093.

12. Promwong, S. and A. Pinsakul, "A monolithic patch antenna on a semi-insulated Alumina (Al2O3Al2O3) substrate for active integrated antenna," Wireless Personal Communications, Vol. 115, 2755-2765, 2020.
doi:10.1007/s11277-020-07556-z

13. Liu, C. Y., T. Jiang, and Y. S. Li, "A compact wide slot antenna with dual band-notch characteristic for ultra-wideband applications," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 10, No. 1, 55-64, 2011.
doi:10.1590/S2179-10742011000100006

14. Ouedraogo, R. O., E. J. Rothwell, A. R. Diaz, K. Fuchi, and A. Temme, "Miniaturization of patch antennas using a metamaterial-inspired technique," IEEE Trans. Antennas Propag., Vol. 60, 2175-2182, 2012.
doi:10.1109/TAP.2012.2189699

15. Weng, Z. B., Y. C. Jiao, F. S. Zhang, Y. Song, and G. Zhao, "A multiband patch antenna on metamaterial substrate," Journal of Electromagnetic Waves and Applications, Vol. 22, 445-452, 2008.
doi:10.1163/156939308784160776

16. Arora, C., S. S. Pattnaik, and R. N. Baral, "SRR superstrate for gain and bandwidth enhancement of microstrip patch antenna array," Progress In Electromagnetics Research B, Vol. 76, 73-85, 2017.
doi:10.2528/PIERB17041405

17. Al-Bawri, S. S., S. Islam, H. Y. Wong, and M. F. Jamlos, "Bandwidth and gain enhancement of quad-band CPW-fed antenna for wireless applications," Sensors, Vol. 20, No. 2, 1-14, 2020.
doi:10.3390/s20020457

18. Patel, S. K., C. Argyropoulos, and cY. P. Kosta, "Broadband compact microstrip patch antenna design loaded by multiple split ring resonator superstrate and substrate," Waves in Random and Complex Media, Vol. 5030, 1-12, 2016.

19. Liu, T., X. Y. Cao, J. Gao, Q. Yang, and W. Q. Li, "Design of miniaturized broadband and high gain metamaterial patch antenna," Microw. Opt. Technol. Lett., Vol. 53, 2858-2861, 2011.
doi:10.1002/mop.26383

20. Zhao, X., Y. Lee, and J. Choi, "Design of a compact patch antenna using split-ring resonator embedded substrate," Microw. Opt. Technol. Lett., Vol. 53, 2786-2790, 2011.
doi:10.1002/mop.26411

21. Dattatreya, G. and K. K. Naik, "A low volume flexible CPW-fed elliptical-ring with split-triangular patch dual-band antenna," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, 2019.

22. Arya, A. K., S. J. Kim, and S. Kim, "A dual-band antenna for LTE-R and 5G lower frequency operations," Progress In Electromagnetics Research Letters, Vol. 88, 113-119, 2020.
doi:10.2528/PIERL19081502

23. Naoui, S., L. Latrach, and A. Gharsallah, "Metamaterials microstrip patch antenna for wireless communication RFID technology," Microw. Opt. Technol. Lett., Vol. 57, 1060-1066, 2015.
doi:10.1002/mop.29016

24. Pandeeswari, R., "SRR and NBCSRR inspired CPW fed triple band antenna with modified ground plane," Progress In Electromagnetics Research C, Vol. 80, 111-118, 2018.
doi:10.2528/PIERC17101501

25. Naik, K. K., "Asymmetric CPW-fed SRR patch antenna for WLAN/WiMAX applications," AEU — International Journal of Electronics and Communications, Vol. 93, 103-108, 2018.
doi:10.1016/j.aeue.2018.06.008

26. Geetharamani, G. and T. Aathmanesan, "Design of metamaterial antenna for 2.4 GHz WiFi applications," Wireless Personal Communications, Vol. 113, No. 4, 2289-2300, 2020.
doi:10.1007/s11277-020-07324-z

27. Boopathi Rani, R. and S. Pandey, "A CPW-fed circular patch antenna inspired by reduced ground plane and CSRR slot for UWB applications with notch band," Microw. Opt. Technol. Lett., Vol. 59, 745-749, 2017.
doi:10.1002/mop.30386

28. Herraiz-Martınez, F. J., G. Zamora, F. Paredes, F. Martın, and J. Bonache, "Ultiband printed monopole antennas loaded with OCSRRs for PANs and WLANs," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1528-1531, 2011.
doi:10.1109/LAWP.2011.2181309

29. Sam, P. J. C. and N. Gunavathi, "A tri-band monopole antenna loaded with circular electric-inductive-capacitive metamaterial resonator for wireless application," Applied Physics A: Materials Science and Processing, Vol. 126, No. 10, 1-11, 2020.
doi:10.1007/s00339-019-3176-6

30. Daniel, R. S. and R. Selvaraj, "A low-profile spilt ring monopole antenna loaded with hexagonal split ring resonator for RFID applications," Progress In Electromagnetics Research M, Vol. 92, 169-179, 2020.
doi:10.2528/PIERM20030702

31. Prasad Jones Christydass, S., N. Gunavathi, and , "Octa-band metamaterial inspired multiband monopole antenna for wireless application," Progress In Electromagnetics Research C, Vol. 113, 97-110, 2021.
doi:10.2528/PIERC21041102