1. Biswal, S. S., D. P. Kar, and S. Bhuyan, "Parameter trade-off between electric load, quality factor and coupling coefficient for performance enrichment of wireless power transfer system," Progress In Electromagnetics Research M, Vol. 91, 49-58, 2020.
doi:10.2528/PIERM20010902
2. Huang, Y. C., C. H. Liu, Y. Xiao, and S. Y. Liu, "Separate power allocation and control method based on multiple power channels for wireless power transfer," IEEE Trans. Power Electron., Vol. 35, No. 9, 9046-9056, 2020.
doi:10.1109/TPEL.2020.2973465
3. Wang, M., J. Feng, Y. Fan, M. Shen, J. Liang, and Y. Shi, "A novel planar wireless power transfer system with distance-insensitive characteristics," Progress In Electromagnetics Research Letters, Vol. 76, 13-19, 2018.
doi:10.2528/PIERL18032301
4. Sahany, S., S. S. Biawal, D. P. Kar, P. K. Sahoo, and S. Bhuyan, "Impact of functioning parameters on the wireless power transfer system used for electric vehicle charging," Progress In Electromagnetics Research, Vol. 79, 187-197, 2019.
doi:10.2528/PIERM18092610
5. Wang, Q., W. Che, M. Dionigi, F. Mastri, M. Mongiardo, and G. Monti, "Gains maximization via impedance matching networks for wireless power transfer," Progress In Electromagnetics Research, Vol. 164, 135-153, 2019.
doi:10.2528/PIER18102402
6. Parise, M. and G. Antonini, "On the inductive coupling between two parallel thin-wire circular loop antennas," IEEE Trans. Electromagn. Compat., Vol. 60, No. 6, 1865-1872, 2018.
doi:10.1109/TEMC.2018.2790265
7. Parise, M., L. Lombardi, F. Ferranti, and G. Antonini, "Magnetic coupling between coplanar filamentary coil antennas with uniform current," IEEE Trans. Electromagn. Compat., Vol. 62, No. 2, 622-626, 2020.
doi:10.1109/TEMC.2019.2904516
8. Shinohara, N., "The wireless power transmission: Inductive coupling, radio wave, and resonance coupling," Wiley Interdisciplinary Rev.: Energy Environ., Vol. 1, No. 3, 337-346, 2012.
doi:10.1002/wene.43
9. Ren, J. S., P. Hu, D. S. Yang, and D. Liu, "Tuning of mid-range wireless power transfer system based on delay-iteration method," IET Power Electronics, Vol. 9, No. 8, 1563-1570, 2016.
doi:10.1049/iet-pel.2015.0291
10. Jiwariyavej, V., T. Imura, and Y. Hori, "Coupling coefficients estimation of wireless power transfer system via magnetic resonance coupling using information from either side of the system," IEEE J. Emerging Sel. Topics Power Electron., Vol. 3, No. 1, 191-200, 2015.
doi:10.1109/JESTPE.2014.2332056
11. Casanova, J. J., Z. N. Low, and J. Lin, "A loosely coupled planar wireless power system for multiple receivers," IEEE Trans. Ind. Electron., Vol. 56, No. 8, 3060-3068, 2009.
doi:10.1109/TIE.2009.2023633
12. Ye, Z. H., Y. Sun, X. Dai, C. S. Tang, Z. H. Wang, and Y. G. Su, "Energy efficiency analysis of U-coil wireless power transfer system," IEEE Trans. Power Electron., Vol. 31, No. 7, 4809-4817, 2017.
13. Costanzo, A., et al., "Conditions for a load-independent operating regime in resonant inductive WPT," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 4, 1066-1076, 2017.
doi:10.1109/TMTT.2017.2669987
14. Hui, S. Y. R., W. X. Zhong, and C. K. Lee, "A critical review of recent progress in mid-range wireless power transfer," IEEE Trans. Power Electron., Vol. 29, No. 9, 4500-4511, 2014.
doi:10.1109/TPEL.2013.2249670
15. Shin, J., S. Shin, Y. Kim, S. Ahn, S. Lee, G. Jung, S. J. Jeon, and D. H. Cho, "Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles," IEEE Trans. Ind. Electron., Vol. 61, No. 3, 1179-1192, 2014.
doi:10.1109/TIE.2013.2258294
16. Nguyen, D. H., "Electric vehicle — Wireless charging-discharging lane decentralized peer-to-peer energy trading," IEEE Access, Vol. 8, 179616-179625, 2020.
doi:10.1109/ACCESS.2020.3027832
17. Huang, L. Y., A. Murray, and B. W. Flynn, "A high-efficiency low-power rectifier for wireless power transfer systems of deep micro-implants," IEEE Access, Vol. 8, 204057-204067, 2020.
doi:10.1109/ACCESS.2020.3036703
17. Huang, L. Y., A. Murray, and B. W. Flynn, "A high-efficiency low-power rectifier for wireless power transfer systems of deep micro-implants," IEEE Access, Vol. 8, 204057-204067, 2020.
doi:10.1109/ACCESS.2020.3036703
18. Huang, L. Y., A. Murray, and B. W. Flynn, "Optimal design of a 3-coil wireless power transfer system for deep micro-implants," IEEE Access, Vol. 8, 193183-193201, 2020.
doi:10.1109/ACCESS.2020.3031960
19. Riehl, P., et al., "Wireless power systems for mobile devices supporting inductive and resonant operating modes," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 3, 780-790, Mar. 2015.
doi:10.1109/TMTT.2015.2398413
20. Zhang, Y. M. and Z. M. Zhao, "Frequency splitting analysis of two-coil resonant wireless power transfer," IEEE Antennas Wireless Propag. Lett., Vol. 13, 400-402, 2014.
doi:10.1109/LAWP.2014.2307924
21. De Miranda, C. M. and S. F. Pichorim, "A self-resonant two-coil wireless power transfer system using open bifilar coils," IEEE Trans. Circuits Syst., II, Exp. Briefs, Vol. 64, No. 6, 615-619, 2017.
doi:10.1109/TCSII.2016.2595402
22. Wang, S. M., Z. Y. Hu, C. C. Rong, X. Tao, C. H. Lu, J. F. Chen, and M. H. Liu, "Optimisation analysis of coil configuration and circuit model for asymmetric wireless power transfer system," IEEE Antennas Wireless Propag. Lett., Vol. 12, No. 7, 1132-1139, 2018.
23. Zhong, W. and S. Y. R. Hui, "Maximum energy efficiency operation of series-series resonant wireless power transfer systems using on-off keying modulation," IEEE Trans. Power Electron., Vol. 33, No. 4, 3595-3603, 2018.
doi:10.1109/TPEL.2017.2709341
24. Lyu, Y. L., F. Y. Meng, G. H. Yang, B. J. Che, Q. Wu, L. Sun, D. Erni, and J. L. W. Li, "A method of using nonidentical resonant coils for frequency splitting elimination in wireless power transfer," IEEE Trans. Power Electron., Vol. 30, No. 11, 6097-6107, 2015.
doi:10.1109/TPEL.2014.2387835
25. Lim, Y., H. Tang, S. Lim, and J. Park, "An adaptive impedance-matching network based on a novel capacitor matrix for wireless power transfer," IEEE Trans. Power Electron., Vol. 29, No. 8, 4403-4413, 2014.
doi:10.1109/TPEL.2013.2292596
26. Wang, M., J. Feng, Y. Y. Shi, and M. H. Shen, "Demagnetization weakening and magnetic field concentration with ferrite core characterization for efficient wireless power transfer," IEEE Trans. Ind. Electron., Vol. 66, No. 3, 1842-1851, 2019.
27. Ricketts, D. S., M. Chabalko, and A. Hillenius, "Tri-loop impedance and frequency matching with high-Q resonators in wireless power transfer," IEEE Antennas Wireless Propag. Lett., Vol. 13, 341-344, 2014.
doi:10.1109/LAWP.2014.2299896
28. Stein, A. L. F., P. A. Kyaw, and C. R. Sullivan, "Wireless power transfer utilizing a high-Q self-resonant structure," IEEE Trans. Power Electron., Vol. 34, No. 7, 6722-6735, 2019.
doi:10.1109/TPEL.2018.2874878
29. Wang, M., C. Zhou, M. H. Shen, and Y. Y. Shi, "Frequency drift insensitive broadband wireless power transfer system," AEU --- Int. J. Electron. Commun., Vol. 117, 2020.
30. Chen, Y. F., W. X. Xiao, Z. P. Guan, B. Zhang, D. Y. Qiu, and M. Y. Wu, "Nonlinear modeling and harmonic analysis of magnetic resonant WPT system based on equivalent small parameter method," IEEE Trans. Ind. Electron., Vol. 66, No. 8, 6604-6612, 2019.
doi:10.1109/TIE.2019.2896077
31. Assawaworrarit, S., X. F. Yu, and S. H. Fan, "Robust wireless power transfer using a nonlinear parity-time-symmetric circuit," Nature, Vol. 546, No. 7658, 387-390, 2017.
doi:10.1038/nature22404
32. Abdelatty, O., X. Y. Wang, and A. Mortazawi, "Position-insensitive wireless power transfer based on nonlinear resonant circuits," IEEE Trans. Microw. Theory Techn., Vol. 67, No. 9, 3844-3855, 2019.
doi:10.1109/TMTT.2019.2904233
33. Kovacic, I. and M. J. Brennan, The Duffing Equation: Nonlinear Oscillators and Their Behavior, Wiley, 2011.
doi:10.1002/9780470977859
34. Wang, X. Y. and A. Mortazawi, "Bandwidth enhancement of RF resonators using duffing nonlinear resonance for wireless power applications," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 11, 3695-3702, 2016.
doi:10.1109/TMTT.2016.2603984
35. Vernizzi, G. J., S. Lenci, and G. R. Franzini, "A detailed study of the parametric excitation of a vertical heavy rod using the method of multiple scales," Meccanica, Vol. 55, No. 12, 2423-2437, 2020.
doi:10.1007/s11012-020-01247-6
36. Gargour, C. S. and V. Ramachandran, "A simple design method for transitional Butterworth-Chebyshev filters," J. Instit. Electron. Radio Eng., Vol. 58, No. 6, 291-294, 1988.
doi:10.1049/jiere.1988.0072