Vol. 109
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-02-03
A Bidirectional LSTM-Based Prognostication of Electrolytic Capacitor
By
Progress In Electromagnetics Research C, Vol. 109, 139-152, 2021
Abstract
Knowing the state-of-health (SOH) of equipment, device or component is very essential for the secure and dependable operation of a system. Electrolytic capacitors are undoubtedly one of the essential components of power supply modules used in aerial and underwater vehicles, and every equipment requires a conversion of voltage from one level to another. This has encouraged research into the components of the power supply used in such systems of which electrolytic capacitor is of interest in this study. In this paper, we explore a new approach to implementing prognostics and health management (PHM) for electrolytic capacitors and propose a method of estimating the SOH leading to the prediction of the remaining useful life (RUL). This is accomplished by using a bidirectional long short-term memory (BLSTM) network to capture the degradation trends. We demonstrate the power and leverage that this method brings to bear in encoding time-domain dependencies in accurately estimating the SOH bereft of state models as employed in traditional methods. We validate the proposed approach using capacitor data recorded at different electrical over-stress accelerated aging conditions. The proposed method surpasses other existing methods in RUL prediction as indicated by the error and relative accuracy.
Citation
Delanyo Kwame Bensah Kulevome, Hong Wang, and Xuegang Wang, "A Bidirectional LSTM-Based Prognostication of Electrolytic Capacitor," Progress In Electromagnetics Research C, Vol. 109, 139-152, 2021.
doi:10.2528/PIERC20120201
References

1. Downey, A., Y.-H. Lui, C. Hu, S. Laflamme, and S. Hu, "Physics-based prognostics of lithium-ion battery using non-linear least squares with dynamic bounds," Reliab. Eng. Syst. Saf., Vol. 182, 1-12, 2019.
doi:10.1016/j.ress.2018.09.018

2. Xia, M., X. Zheng, M. Imran, and M. Shoaib, "Data-driven prognosis method using hybrid deep recurrent neural network," Appl. Soft Comput., Vol. 93, 106351, 2020.
doi:10.1016/j.asoc.2020.106351

3. Du, P., J. Wang, W. Yang, and T. Niu, "A novel hybrid model for short-term wind power forecasting," Appl. Soft Comput., Vol. 80, 93-106, 2019.
doi:10.1016/j.asoc.2019.03.035

4. Rigamonti, M., P. Baraldi, E. Zio, D. Astigarraga, and A. Galarza, "Particle filter-based prognostics for an electrolytic capacitor working in variable operating conditions," IEEE Trans. Power Electron., Vol. 31, No. 2, 1567-1575, 2015.
doi:10.1109/TPEL.2015.2418198

5. Celaya, J. R., C. S. Kulkarni, S. Saha, G. Biswas, and K. Goebel, "Accelerated aging in electrolytic capacitors for prognostics," Proceedings of the Annual Reliability and Maintainability Symposium, 1-6, 2012.

6. Renwick, J., C. S. Kulkarni, and J. R. Celaya, "Analysis of electrolytic capacitor degradation under electrical overstress for prognostic studies," Proceedings of the Annual Conference of the Prognostics and Health Management Society, Vol. 6, 2015.

7. Jamshidi, M. B. and N. Alibeigi, "Neuro-fuzzy system identification for remaining useful life of electrolytic capacitors," 2017 2nd International Conference on System Reliability and Safety (ICSRS), 227-231, 2017.
doi:10.1109/ICSRS.2017.8272826

8. Lee, K.-W., M. Kim, J. Yoon, S. Bin Lee, and J.-Y. Yoo, "Condition monitoring of DC-link electrolytic capacitors in adjustable-speed drives," IEEE Trans. Ind. Appl., Vol. 44, No. 5, 1606-1613, 2008.
doi:10.1109/TIA.2008.2002277

9. Qin, Q., S. Zhao, S. Chen, D. Huang, and J. Liang, "Adaptive and robust prediction for the remaining useful life of electrolytic capacitors," Microelectron. Reliab., Vol. 87, 64-74, 2018.
doi:10.1016/j.microrel.2018.05.020

10. Garcia-Garcia, A., S. Orts-Escolano, S. Oprea, V. Villena-Martinez, P. Martinez-Gonzalez, and J. Garcia-Rodriguez, "A survey on deep learning techniques for image and video semantic segmentation," Appl. Soft Comput., Vol. 70, 41-65, 2018.
doi:10.1016/j.asoc.2018.05.018

11. Chen, X., Z. Wei, M. Li, and P. Rocca, "A review of deep learning approaches for inverse scattering problems (invited review)," Progress In Electromagnetics Research, Vol. 167, 67-81, 2020.
doi:10.2528/PIER20030705

12. Liu, C., M.-H. Yang, and X.-W. Sun, "Towards robust human millimeter wave imaging inspection system in real time with deep learning," Progress In Electromagnetics Research, Vol. 161, 87-100, 2018.
doi:10.2528/PIER18012601

13. Lin, Y., X. Li, and Y. Hu, "Deep diagnostics and prognostics: An integrated hierarchical learning framework in PHM applications," Appl. Soft Comput., Vol. 72, 555-564, 2018.
doi:10.1016/j.asoc.2018.01.036

14. Zhang, L., J. Lin, B. Liu, Z. Zhang, X. Yan, and M. Wei, "A review on deep learning applications in prognostics and health management," IEEE Access, Vol. 7, 162415-162438, 2019.
doi:10.1109/ACCESS.2019.2950985

15. Cabanas, M. F., F. Pedrayes Gonzalez, M. G. Melero, C. H. Rojas Garcıa, G. A. Orcajo, J. M. Cano Rodrıguez, and J. G. Norniell, "Insulation fault diagnosis in high voltage power transformers by means of leakage flux analysis," Progress In Electromagnetics Research, Vol. 114, 211-234, 2011.
doi:10.2528/PIER11010302

16. Faiz, J. and B. M. Ebrahimi, "Mixed fault diagnosis in three-phase squirrel-cage induction motor using analysis of air-gap magnetic field," Progress In Electromagnetics Research, Vol. 64, 239-255, 2006.
doi:10.2528/PIER06080201

17. Vasan, A. S. S., B. Long, and M. Pecht, "Diagnostics and prognostics method for analog electronic circuits," IEEE Trans. Ind. Electron., Vol. 60, No. 11, 5277-5291, 2012.
doi:10.1109/TIE.2012.2224074

18. Venet, P., F. Perisse, M. H. El-Husseini, and G. Rojat, "Realization of a smart electrolytic capacitor circuit," IEEE Ind. Appl. Mag., Vol. 8, No. 1, 16-20, 2002.
doi:10.1109/2943.974353

19. Kulkarni, C., G. Biswas, J. Celaya, and K. Goebel, "Prognostic techniques for capacitor degradation and health monitoring," The Maintenance & Reliability Conference, MARCON, 2011.

20. Gupta, A., O. P. Yadav, D. DeVoto, and J. Major, "A review of degradation behavior and modeling of capacitors," ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, Vol. 51920, 2018.

21. Leite, A. V. T., H. J. A. Teixeira, A. J. Marques Cardoso, and R. M. Esteves Araujo, "A simple ESR identification methodology for electrolytic capacitors condition monitoring," Proceedings of the 20th International Congress on Condition Monitoring and Diagnostic Engineering Management, COMADEM’07, 75-84, 2007.

22. Hochreiter, S. and J. Schmidhuber, "Long short-term memory," Neural Comput., Vol. 9, No. 8, 1735-1780, 1997.
doi:10.1162/neco.1997.9.8.1735

23. Pascanu, R., T. Mikolov, and Y. Bengio, "On the difficulty of training recurrent neural networks," International Conference on Machine Learning, 1310-1318, 2013.

24. Huang, C.-G., H.-Z. Huang, and Y.-F. Li, "A bidirectional LSTM prognostics method under multiple operational conditions," IEEE Trans. Ind. Electron., Vol. 66, No. 11, 8792-8802, 2019.
doi:10.1109/TIE.2019.2891463

25. Huang, C.-G., X.-Y. Li, H.-Z. Huang, and Y.-F. Li, "Fault prognosis of engineered systems: A deep learning perspective," 2019 Annual Reliability and Maintainability Symposium (RAMS), 1-7, 2019.

26. Merity, S., N. S. Keskar, and R. Socher, "Regularizing and optimizing LSTM language models," International Conference on Learning Representations, 2018.

27. Chen, J., H. Jing, Y. Chang, and Q. Liu, "Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process," Reliab. Eng. Syst. Saf., Vol. 185, 372-382, 2019.
doi:10.1016/j.ress.2019.01.006

28. Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting," J. Mach. Learn. Res., Vol. 15, No. 1, 1929-1958, 2014.

29. Zhang, Y., R. Xiong, H. He, and M. G. Pecht, "Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries," IEEE Trans. Veh. Technol., Vol. 67, No. 7, 5695-5705, 2018.
doi:10.1109/TVT.2018.2805189

30. Kulkarni, C. S., J. R. Celaya, G. Biswas, and K. Goebel, "Prognostics of power electronics, methods and validation experiments," 2012 IEEE AUTOTESTCON Proceedings, 194-199, 2012.
doi:10.1109/AUTEST.2012.6334578

31. Kulkarni, C., G. Biswas, X. Koutsoukos, J. Celaya, and K. Goebel, "Integrated diagnostic/ prognostic experimental setup for capacitor degradation and health monitoring," 2010 IEEE AUTOTESTCON, 1-7, 2010.

32. Shatnawi, A., G. Al-Bdour, R. Al-Qurran, and M. Al-Ayyoub, "A comparative study of open source deep learning frameworks," 2018 9th International Conference on Information and Communication Systems (ICICS), 72-77, 2018.
doi:10.1109/IACS.2018.8355444