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A Bidirectional LSTM-Based Prognostication of Electrolytic
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Abstract—Knowing the state-of-health (SOH) of equipment, device or component is very essential
for the secure and dependable operation of a system. Electrolytic capacitors are undoubtedly one of
the essential components of power supply modules used in aerial and underwater vehicles, and every
equipment requires a conversion of voltage from one level to another. This has encouraged research
into the components of the power supply used in such systems of which electrolytic capacitor is of
interest in this study. In this paper, we explore a new approach to implementing prognostics and health
management (PHM) for electrolytic capacitors and propose a method of estimating the SOH leading
to the prediction of the remaining useful life (RUL). This is accomplished by using a bidirectional
long short-term memory (BLSTM) network to capture the degradation trends. We demonstrate the
power and leverage that this method brings to bear in encoding time-domain dependencies in accurately
estimating the SOH bereft of state models as employed in traditional methods. We validate the proposed
approach using capacitor data recorded at different electrical over-stress accelerated aging conditions.
The proposed method surpasses other existing methods in RUL prediction as indicated by the error
and relative accuracy.

1. INTRODUCTION

Power supply modules are used in most equipment to provide power for functionality. This simple but
important device has permeated every sector of our lives from household equipment to mission critical
facilities. These modules serve as means of converting voltages and/or current from one DC level to
another or from AC to DC. The electrolytic capacitors in providing smoothed output voltages tend to
fail over the course of their operating life. These present unique challenges to performing root cause
analysis when faults occur. However, since it is not practical to periodically interrupt the operation
of an equipment to analyze and sample the state of health (SOH) of these devices, it is convenient to
devise another approach to monitor the degeneration of these components and estimate the remaining
useful life (RUL). Estimating the SOH is essential to safeguard the continual operation and establish
confidence in the reliability of a system.

The concept of prognostics and health management (PHM) is based on the condition-based
maintenance (CBM) approach. Incorporating the ability to perform estimations and predictions makes
PHM an acceptable and reliable approach. The implementation of PHM can be dismembered into three
activities. They are observing, analyzing, and decision making. PHM has been explored in several areas
of engineering using physics-based models [1], data-driven models [2], or hybrid models [3]. In capacitor
health management, the empirical model is used in estimating the end of life (EOL) and predicting
the RUL. The problem of estimating the RUL under variable operating condition of a capacitor is
investigated by Rigamonti et al. [4], and a physics based model is developed in a particle filter framework
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to predict the RUL of an electrolytic capacitor. In like fashion, Celaya et al. [5] proposed an empirical
model in the Kalman filter framework to predict the RUL of electrolytic capacitors with reasonable
performance. However, their model failed to capture the change in the behavior of the degradation trend
toward the end of the test data. An analysis of the degeneration in electrolytic capacitors was studied by
Renwick et al. [6] under electrical over-stress by measuring the rise time (τ) during each cycle. Jamshidi
and Alibeigi [7] investigated a soft computing approach for RUL estimation of electrolytic capacitors
using an adaptive neuro fuzzy inference system (ANFIS). A simple and cost-effective approach was
conducted to monitor the condition of the DC-Link capacitors in adjustable speed drives [8]. Qin et
al. [9] proposed a method to automatically estimate the capacitance and equivalent series resistance
(ESR) of a capacitor in an environment free of noise as well as independent of the variations in the
temperature or load. The approaches adopted by the aforementioned papers had some challenges and
could not adapt well to the degradation trend which was equally identified in [9]. The exponential
model is common in the implementation of an empirical model. However, its simplistic nature fails to
capture the degradation trend accurately. Therefore, an adaptive method [9] using an empirical model
is achieved through the combination of two models. This method has also left a gap as it also relies on
the use of empirical models in predicting the RUL.

In recent times, deep learning methods have been applied in diverse applications [10–12] with
significant amount of success. This has inspired researchers to gravitate towards applying relevant deep
learning approaches in PHM implementations [13, 14].

In this research paper, we propose a bidirectional long short-term memory (BLSTM) based
prognostics model which is a variant of the recurrent neural network (RNN) to estimate the SOH
through the prediction of the percentage decrease in capacitance. Our contributions in this research are
given as follows:

(i) Motivated by the fact that little research has been undertaken in applying deep learning methods
to capacitance health prediction, we implement multilayer perceptron (MLP) and Long Short-Term
Memory (LSTM) models to compare with the performance of the proposed model.

(ii) We leverage the ability of the BLSTM to learn its own parameters through back propagation
through time (BPTT) in training the degradation data samples. This is contrary to the physics-
based or model-based methods using lumped parameters and equivalent circuits to model the
internal characteristics of the capacitor which require much time to parameterize.

(iii) We implement a BLSTM network to efficiently relate the matrix of features to the SOH of the
capacitors directly without the need for state space equations and inference algorithms used in
particle filters, Kalman filters, and other variants.

The effectiveness of the proposed method is verified using the standard capacitor dataset available
at the NASA dataset repository [6]. The rest of the paper is organized as follows: Section 2 describes
the fundamental principles of PHM. Section 3 investigates and analyzes the mechanisms that cause
failure in electrolytic capacitors. Section 4 expounds on the overview of the proposed model and the
process used in undertaking this research. Section 5 presents the BLSTM based health monitoring
and prognostics of electrolytic capacitors. In Section 6, the results are presented and discussed. The
conclusion is drawn in Section 7.

2. FUNDAMENTAL PRINCIPLES OF PHM

Prognostics is an essential component in data-driven process for PHM. This begins with the collection
and observation of operational history of a device. An unusual behavior in the data is an indication
of a potential failure warning. Diagnosis is then performed to extract the information relating to the
identified anomaly in the data [15, 16]. This information, in addition to other relevant historical and
operational details, is used in the prognostics to estimate the RUL, and appropriate measures are taken
based on the outcome [17]. The constituents of a PHM framework is illustrated in Figure 1(a). An
exemplary behavior in the possible operating pattern of a typical system is shown in Figure 1(b) which
highlights a normal and degraded performance region.
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(a) (b)

Figure 1. (a) Constituents of a PHM framework, (b) typical degradation in performance.

3. ELECTROLYTIC CAPACITOR

The simplest representation of a capacitor is two parallel plates separated by a dielectric material having
uniform thickness. The external connection is made up of a positive and negative electrode having good
electrical conductivity. When a voltage source is connected across its terminals, electrical charges are
induced in the dielectric material. The permittivity of this dielectric material in addition to the distance
between the parallel plates and area determines the overall capacitance value. However, an in-depth
analysis of an electrolytic capacitor shows that it comprises an anode foil covered with thin dielectric
layer (Aluminum Oxide) interleaved with paper and impregnated in an electrolyte as shown in Figure 2.

Figure 2. Structure of an electrolytic capacitor.

3.1. Degeneration and Failure Mechanisms in an Electrolytic Capacitor

The ESR of the capacitor is the combination of the ohmic (Ro), frequency dependent dielectric layer
(Rd), and temperature dependent (Re) resistances. The propensity of an electrolytic capacitor in a
device to fail has been rated around 60% as compared to other components under rated conditions
at an operating temperature of 25◦C [18] as given in Figure 3(a). The conditions under which a
capacitor operates can significantly affect its performance. The electrolyte impregnated in an aluminum
electrolytic capacitor vaporizes over time and leads to the deterioration of the capacitor [5]. Some
prominent factors that can contribute to the degradation of the capacitor over its useful life are
illustrated in Figure 3(b).
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(a) (b)

Figure 3. (a) Probability of failure of components in a device, (b) factors that can contribute to the
degradation of an electrolytic capacitor.

3.1.1. Effect of Temperature

Within an aluminum electrolytic capacitor, the rise in temperature and power dissipation are directly
proportional [19] and occur when the voltage across the dielectric material varies. The efficient operation
of the capacitor is highly dependent on the ambient temperature. Wide variations of the internal and
external temperatures can affect its stipulated performance. High temperatures within the capacitor
result in the evaporation of the electrolyte leading to its degradation. Leakage current also contributes
to heat accumulation within the capacitor capsule [20].

3.1.2. Effect of Pressure

The diminishing rate of the electrolyte has a direct relationship with the electrolyte vapor pressure
as a result of internal chemical reaction and rise in temperature which occurs due to the charge and
discharge cycles [19].

3.1.3. Effect of Voltage

The voltage range within which the capacitor operates is one of the important characteristics that
must be considered. High operating voltages applied to the terminals of an electrolytic capacitor will
eventually lead to the degradation and potential destruction of a capacitor.

3.1.4. Effect of Ripple Current

The ripple current contributes to power dissipation and self-heating within the capacitor which results
in temperature rise. High levels of ripple current will eventually reduce the reliability of a capacitor in
a circuit.

3.1.5. Effect of ESR

Increase in ESR arises as a result of depreciation in the electrolyte volume which in turn decreases
the capacitance. As this occurs, there is a cumulative rise in temperature which aggravates the
electrolyte evaporation process [21]. Also, the variation in ESR is frequency dependent, and it is
inversely proportional to the temperature.
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3.1.6. Effect of Humidity

The ingress and accumulation of moisture results from temperature variations which can cause corrosion
of the capacitor electrodes. When being taken into account, it can have a slight influence on the
degradation of a capacitor.

3.1.7. Effect of Vibration

Under normal conditions, minor vibrations should not affect the performance or life of an electrolytic
capacitor. However, under excessive vibration environments, the connecting leads may get detached
and lose contact with the remaining circuitry. Under worse conditions, the life of the capacitor can be
drastically shortened leading to catastrophic failure.

The interaction of diverse factors can affect the performance and life of electrolytic capacitors as
aforementioned. From the preceding analysis and juxtaposing the various effects, it can be realized that
two major factors stand out. These are the temperature and ESR whose effect on the life of electrolytic
capacitor is influenced by the remaining other factors.

We proceed by building a BLSTM architecture to predict and estimate the EOL and RUL of
electrolytic capacitor under accelerated electrical over-stress aging condition.

4. OVERVIEW OF PROPOSED METHOD

The LSTM network is an improvement on the RNN by introducing memory cells to overcome the
vanishing and exploding gradient problem inherent in classical RNNs [22, 23]. We therefore capitalize on
the learning function of LSTM to model the temporal dynamics of sampled data in prognostics scenarios.
However, to make the learning process more efficient, we adopt the BLSTM which is composed of two
parallel layers propagating in both the forward and backward directions of each hidden layer [24]. By
doing so, the pattern in the actual data can be captured in both the past and future contexts which is
gainful in sequential learning [25]. The degradation in the capacitance value can be observed as time
series data over a given period of time. For this reason, the BLSTM network is used to learn the pattern
in the degradation data to estimate the SOH and predict the RUL and EOL.

4.1. Problem Representation

We begin our study by considering six electrolytic capacitors whose health conditions have been
monitored and stored over a given time. Therefore, the actual RUL and EOL can be inferred during
training. However, extrapolation from a given point in time to the EOL is estimated by the model.
A perfect match between given points is highly desirable, hence the best achievable results must be
the closest predictions to actual values. The objective is to find the mapping between the true and
estimated values so as to minimize the error. The training of deep networks can be propounded as a
non-convex optimization problem [26].

4.2. The Architecture of BLSTM

As aforementioned, the BLSTM is composed of two parallel layers of LSTM networks propagating in
the forward and backward directions. The architecture of a BLSTM is shown in Figure 4.

The activation functions used in the realization of the LSTM network are the sigmoid function (σ)
and the hyperbolic tangent function (tanh) given by:

σ(z) =
(

1
1 + e−z

)

tanh(z) =
ez − e−z

ez + e−z

(1)

The initial stage of the LSTM is the decision to retain or discard information and pass the outcome
to the cell state. The sigmoid function transforms the output of the forget gate to lie between 0 and
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Figure 4. Illustration of BLSTM architecture.

1. The complete retention of information is represented by 1 whereas 0 denotes a complete removal of
information [27]. This is given by:

ft = σ(θxfx(t) + θhfht−1 + bf ) (2)

where ft is the forget gate, bf the bias term, and θ the layer weights.
The input gate (it) and input node (gt) select the amount of new computed information to be

stored in the internal state. These are computed as:

it = σ(θxix(t) + θhih(t−1) + bi) (3)
gt = tanh(θxgx(t) + θhgh(t−1) + bg) (4)

The updated cell state Ct at time t is a combination of Eqs. (2)–(4) expressed as:

C(t) = (ft � C(t−1)) ⊕ (it � gt) (5)

The output gate (ot) determines how much information in the internal state moves on to the next layer.

ot = σ(θxox(t) + θhoh(t−1) + bo) (6)
h(t) = ot � tanh(C(t)) (7)

Since BLSTM has two LSTM layers, there are forward and backward passes which result in two
outputs given by:

hft = H(θxhfxt + θhfhfhft−1 + bhf ) (8)
hbt = H(θxhbxt + θhbhbhbt−1 + bhb) (9)

where hf and hb are the outputs of the forward and backward layers, respectively.

4.3. Training the Model

The main idea behind the training process of the network is to find the best parameters in order to
minimize the loss function. The LSTM is modeled around three layers. They are the input, hidden,
and output layers sequentially. In the proposed model, the inputs are passed into the BLSTM network,
and the output features are computed. The element-wise summation of the forward and backward pass
of each time-step results in the total output feature given by:

h
(1)
t = hf

(1)
t ⊕ hb

(1)
t (10)

A fully connected layer transforms the final hidden state tensor hFt into a single SOH estimated value
at time-step t through a rectified linear unit g(·) as follows:

SÔHt = g(FouthFt + bz) (11)
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where Fout and bz represent the weight matrix of the fully connected layer and the biases, respectively.
In this paper, mean squared error (MSE) is used as the function for computing the loss. The

discrepancy between the actual and estimated SOHs at each time step is expressed as:

L =
N∑

n=1

[
1
N

(
SOH(n) − SÔH(n)

)2
]

(12)

where N is the total training set, and the actual and estimated SOH values in the training set are
SOH(n) and SÔH(n), respectively.

To overcome the problem of over fitting, the dropout regularization [28] is used to modify the
network itself rather than adjusting the cost function by randomly dropping a given percentage of total
neurons in a layer in addition to all the connections to and from these neurons during each training
iteration. The ‘thinned’ neurons comprises all the neurons that remained after the dropout as shown
in Figure 5.

(a) (b)

Figure 5. Dropout regularization, (a) no dropout, (b) dropout.

This culminates in a revamped network capable of generalizing better. The Adaptive Moment
Estimation (Adam) Optimizer is chosen in building the model due to its effectiveness in improving the
learning process [29].

4.4. Data Preparation

The dataset acquired is preprocessed prior to implementation by sampling points from each of the six
original datasets to enhance training and offer better prediction. The min-max normalization is used
to scale the data to range from 0 to 1.

x(i)
norm =

x(i) − xmin

xmax − xmin
(13)

where x(i) is the ith sample, and xmin and xmax are the minimum and maximum values in the feature
columns, respectively.

4.5. Model Evaluation

The veracity of the proposed approach is evaluated using the mean absolute percentage error (MAPE),
root mean square error (RMSE), and the relative accuracy (RA) at different prediction start times
expressed as:

RMSE =

√√√√√√
n∑

t=1

(SOHt − SÔHt)2

n
(14)
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MAPE =
100
n

n∑
t=1

∣∣∣∣∣
SOHt − SÔHt

SOHt

∣∣∣∣∣ (15)

where SOHt, SÔHt, and n are the actual, predicted, and number of sample values, respectively.

RA = 1 − |ActualRUL − PredictedRUL|
ActualRUL

(16)

5. EXPERIMENTAL ESTIMATION OF CAPACITANCE DEGENERATION

The capacitor dataset is acquired from NASA data repository. This includes the percentage decrease
in the capacitance of six electrolytic capacitors which are subjected to electrical over-stress under
accelerated aging condition as indicated in Figure 6. The mean capacitance of these capacitors is
2123µF. The experimental details of the accelerated electrical over-stress aging of these capacitance are
expounded in [30].

Figure 6. The percentage loss in capacitance [31].

Prior to training the proposed BLSTM based model, a given percentage of the dataset is reshaped
into the required form using a sliding time window (TW) technique. This makes the network observe
a given number of capacitor values up to a given time (t) and predict the next output at time (t + 1)
based on the captured trend.

The experiments are conducted using the proposed model to perform estimations and predictions
based on observed data, and its performance is compared to MLP and LSTM models. These are
performed on an Intel Core i5 laptop equipped with 8 GB RAM. The operating system is windows 10,
and python 3.6 is the programming language used in formulating the models with Keras API [32]. The
overall process of implementing the proposed model is illustrated in Figure 7.

To select the best hyperparameters for training, a random search is performed for the number
of units, number of layers, dropout, batch size, and the number of epochs. The extremities of
these hyperparameters are set to [1, 1, 0.0, 2, 20] and [200, 5, 0.5, 12, 200] with step size of [5,
1, 0.1, 2, 20]. Table 1 shows the best parameters for BLSTM for the six capacitors under various
training datasets. Twenty experimental trials are conducted with the optimal hyperparameters, and
the average performance is recorded. The choice of hyperparameter configuration plays a vital role in
the performance of a model, and as such, the impact of the sliding TW length on the RUL prediction
is also investigated.
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Figure 7. Flowchart of the proposed method for EOL estimation and RUL prediction.

Table 1. Optimal parameters for BLSTM models.

Training data Batch size Epoch Units Dropout
0–60 8 120 136 0.2
0–80 6 120 131 0.1
0–100 4 140 96 0.0
0–120 6 100 86 0.0

(a) (b)
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(c) (d)

Figure 8. Prediction results of capacitor #6 using proposed BLSTM-based approach, (a) prediction
from t = 60, (b) prediction from t = 80, (c) prediction from t = 100, (d) prediction from t = 120.

(a) (b)

Figure 9. (a) RMSE comparison of predictions, (b) relative accuracy of predicted results.

6. RESULTS AND DISCUSSION

The requirement for establishing the inefficacy of a capacitor is outlined in [5]. Under electrical
operations, a capacitor is deemed to have failed if its value decreases by 20% of its pristine value.
However, in this study, a threshold value of 16% is set, and prediction start times of 60th, 80th,
100th, and 120th hour are selected. After training and testing the proposed BLSTM network with
the preprocessed dataset, the average prediction results of capacitor #6 at selected times are shown in
Figure 8. It can be observed that the proposed model performs creditably in estimating the RUL and
predicting the EOL of the degrading capacitors.

It can be seen from the results that the actual EOL is at 168, and the mean EOL is predicted by the
proposed model at various prediction start points. Setting t = 60, the actual RUL is 108 hours, and the
EOL predicted by the model is 169. This results in a predicted RUL of 109 hours. The discrepancy in
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Table 2. Comparing model performance under varied starting points for capacitor #6.

Models
Start

Prediction
Actual
EOL

Predicted
EOL

Actual
RUL

Predicted
RUL

RA
(%)

RMSE MAPE

MLP

60th 168 172 108 112 96.48 0.6237 6.4242
80th 168 171 88 91 96.59 0.6038 5.9892
100th 168 170 68 70 97.35 0.3614 2.7829
120th 168 170 48 50 97.91 0.2466 1.6257

LSTM

60th 168 167 108 107 98.44 0.6050 7.133
80th 168 167 88 87 98.63 0.3414 3.8014
100th 168 169 68 69 98.82 0.1943 2.0281
120th 168 167 48 47 98.92 0.2092 2.1420

Proposed
BLSTM
based
model

60th 168 169 108 109 99.01 0.3083 3.5096
80th 168 168 88 88 99.05 0.2206 2.3819
100th 168 168 68 68 99.17 0.1594 1.8421
120th 168 168 48 48 99.28 0.1268 1.4465

Table 3. Average prediction performance of capacitor 1–5.

Dataset
Start

Prediction
Actual
EOL

Predicted
EOL

Actual
RUL

Predicted
RUL

RMSE
MAPE

(%)

Capacitor
1

60 171 172 111 112 0.4847 6.7973
80 171 172 91 92 0.2554 2.9824
100 171 171 71 71 0.1482 1.8746
120 171 171 51 51 0.1178 1.1792

Capacitor
2

60 163 161 103 101 0.5075 4.2115
80 163 163 83 83 0.1842 2.5436
100 163 163 63 63 0.1780 1.9546
120 163 163 43 43 0.0533 0.7428

Capacitor
3

60 163 164 103 104 0.3349 3.4325
80 163 164 83 84 0.1744 2.1915
100 163 163 63 63 0.1660 1.2788
120 163 163 43 43 0.1592 1.3106

Capacitor
4

60 163 162 103 102 0.4546 4.9643
80 163 164 83 84 0.1329 2.1768
100 163 163 63 63 0.1169 2.0907
120 163 163 43 43 0.0744 1.1577

Capacitor
5

60 166 167 106 107 0.3673 3.7725
80 166 167 86 87 0.1565 1.5933
100 166 165 66 65 0.1646 1.4309
120 166 166 46 46 0.0871 0.9187
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prediction by the model is computed by taking the difference between the actual and predicted results.
This same analysis is performed on prediction start time of t = 80, 100, 120 consecutively. It can be
inferred from the final analysis that satisfactory RUL predictions are produced as more data become
available for training in terms of the prediction start time. Since the BLSTM can access both previous
and future information, it greatly improves the training ability hence giving it an edge over the other
methods as shown in Figure 9. To validate the veracity of the proposed model, its performance is
measured against MLP and LSTM models as reported in Table 2.

To substantiate the efficacy of the proposed model holistically, further experiments were conducted
on the remaining five capacitor degradation dataset, and the performance of the proposed method
in predicting the RUL at selected times is presented in Table 3. This leads to the conclusion that
the proposed approached has the ability to generalize well towards the EOL and RUL prediction of
electrolytic capacitors under electrical over-stress conditions. From Table 3, it can be observed that the
60th hour prediction start point records high values of RMSE, and hence the predicted RUL slightly
deviates from the true value. This is attributed to the limited training data available prior to this point.

7. CONCLUSION

In this research study, a model based on BLSTM network for the prognostics and health monitoring
of electrolytic capacitors was proposed for an equitable RUL prediction. Noteworthy attributes of the
proposed approach include leveraging the learning and memory retention capability of the BLSTM
networks through self-learning even when samples in each training set were limited. Even though
the other methods performed equally well, the proposed method produced meticulous predictions of
the RUL with minimal errors. This approach has proven to be a promising method for capacitance
performance over a period of time and sets the pace for future diagnostics and prognostics strategies.
There are still more opportunities for improvement in this area. Therefore, in future studies, we will
consider multiple operating conditions and characteristics of the electrolytic capacitor in determining
its performance and predicting the RUL.
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