Vol. 107
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-12-17
Mutual Coupling Reduction Between Slotted-T MIMO Elements for UWB Applications
By
Progress In Electromagnetics Research C, Vol. 107, 203-217, 2021
Abstract
In the present scenario, multiple-input-multiple-output (MIMO) elements provide the capacity to generate more than one radiation pattern with different polarizations, which show a prodigious role in the modern telecommunication sector. A new two-element MIMO antenna with minimization in mutual coupling is presented in this paper. The proposed design reduces mutual coupling between antenna elements. The strip-line mechanism is used as a feed and is simulated using HFSS v 15. MIMO element design is done with four T-shaped slots in all directions of the patch, further enhancing the cross-correlation. MIMO antenna consists of two radiators on a 50 x 25 mm2 FR-4 substrate. A T-shape ground stub, along with a slot, reduces mutual coupling (MC) and Impedance Bandwidth (IBW) of the proposed design. The design provides multi-band characteristics in the entire UWB range with practical applications like WiMAX (3.5 GHz), WLAN (5.9 GHz), X-band SATCOM applications (7.9 GHz) and Radar, Mobile phones, and commercial WLAN (9.3 GHz). The spacing between elements is in the order of 0.215λ0. MC reduction of 20 dB is achieved at every resonant frequency.
Citation
Kudumu Vara Prasad, and Makkapati Venkata Prasad, "Mutual Coupling Reduction Between Slotted-T MIMO Elements for UWB Applications," Progress In Electromagnetics Research C, Vol. 107, 203-217, 2021.
doi:10.2528/PIERC20091103
References

1. Biswas, A. K. and U. Chakraborty, "Reduced mutual coupling of compact MIMO antenna designed for WLAN and WiMAX applications," Int. J. RF Microw. Comput. Aided Eng., e21629, 2018.

2. Abdullah, M., Q. Li, W. Xue, G. Peng, Y. He, and X. Chen, "Isolation enhancement of MIMO antennas using shorting pins," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 10, 1249-1263, 2019.
doi:10.1080/09205071.2019.1606738

3. Babu, K. V. and B. Anuradha, "Design of inverted L-shape & ohm symbol inserted MIMO antenna to reduce the mutual coupling," Int. J. Electron. Commun. (AEU), Vol. 105, 42-53, 2019.
doi:10.1016/j.aeue.2019.04.002

4. Xi, L., H. Zhai, and L. Li, "A low-profile antenna system with a compact new structure for reducing mutual coupling," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 1, 71-83, 2018.
doi:10.1080/09205071.2018.1524796

5. Babashah, H., H. R. Hassani, and S. Mohammad-Ali-Nezhad, "A compact UWB printed monopole MIMO antenna with mutual coupling reduction," Progress In Electromagnetics Research C, Vol. 91, 55-67, 2019.
doi:10.2528/PIERC19010905

6. Liu, Y., X. Yang, Y. Jia, and Y. Jay Guo, "A low correlation and mutual coupling MIMO antenna," IEEE Access, Vol. 7, 127384-127392, 2019.
doi:10.1109/ACCESS.2019.2939270

7. El Ouahabi, M., A. Zakriti, M. Essaaidi, A. Dkiouak, and E. Hanae, "A miniaturized dual-band MIMO antenna with low mutual coupling for wireless applications," Progress In Electromagnetics Research C, Vol. 93, 93-101, 2019.
doi:10.2528/PIERC19032601

8. Gurjar, R., D. K. Upadhyay, B. K. Kanaujia, and K. Sharma, "A novel compact self-similar fractal UWB MIMO antenna," Int. J. RF Microw. Comput. Aided Eng., e21632, 2018.

9. Nadeem, I. and D.-Y. Choi, "Study on mutual coupling reduction technique for MIMO antennas," IEEE Access, Vol. 7, 2019.

10. Salehi, M. and A. Tavakoli, "A novel low mutual coupling microstrip antenna array design using the defected ground structure," Int. J. Electron. Commun. (AEU), 718-723, 2006.
doi:10.1016/j.aeue.2005.12.009

11. Anitha, R., V. P. Sarin, P. Mohanan, and K. Vasudevan, "Enhanced isolation with defected ground structure in MIMO antenna," Electronics Letters, Vol. 50, No. 24, 1784-1786, November 20, 2014.
doi:10.1049/el.2014.2795

12. Luo, C.-M., J.-S. Hong, and L.-L. Zhong, "Isolation enhancement of a very compact UWB-MIMO slot antenna with two defected ground structures," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1766-1769, 2015.
doi:10.1109/LAWP.2015.2423318

13. Sun, X.-B. and M. Y. Cao, "Low mutual coupling antenna array for WLAN application," Electronics Letters, Vol. 53, No. 6, 368-370, March 16, 2017.
doi:10.1049/el.2016.4563

14. Kumar, N. and U. K. Kommuri, "MIMO antenna H-plane isolation enhancement using UC-EBG structure and metal line strip for WLAN applications," Radio Engineering, Vol. 29, No. 2, 399-406, June 2019.

15. Xiao, S., M.-C. Tang, Y.-Y. Bai, S. Gao, and B.-Z. Wang, "Mutual coupling suppression in microstrip array using defected ground structure," IET Microw. Antennas Propag., Vol. 5, No. 12, 1488-1494, 2011.
doi:10.1049/iet-map.2010.0154

16. Ghaloua, A., J. Zbitou, L. El Abdellaoui, M. Latrach, A. Tajmouati, and A. Errkik, "Reduction of mutual coupling between closely spaced microstrip antennas arrays using electromagnetic band-gap (2D-EBG) structures," TELKOMNIKA, Vol. 16, No. 1, 151-158, February 2018, ISSN: 1693-6930.
doi:10.12928/telkomnika.v16i1.7017

17. Thakur, E., N. Jaglan, S. D. Gupta, and B. K. Kanaujia, "A compact notched UWB MIMO antenna with enhanced performance," Progress In Electromagnetics Research C, Vol. 91, 39-53, 2019.
doi:10.2528/PIERC18120202

18. Dwairi, M. O., M. S. Soliman, A. A. Alahmadi, S. H. A. Almalki, and I. I. M. Abu Sulayman, "Design and performance analysis of fractal regular slotted-patch antennas for ultra-wideband communication systems," Wireless Personal Communications, Vol. 105, 819-833, February 5, 2019.

19. Biswas, A. K., A. Kundu, A. K. Bhattacharjee, and U. Chakraborty, "Isolator-based mutual coupling reduction of H-shaped patches in MIMO antenna applications," Advances in Computer, Communication and Control, Lecture Notes in Networks and Systems, Vol. 41, 361-366, 2019.
doi:10.1007/978-981-13-3122-0_34

20. Ghosh, J., D. Mitra, and S. Das, "Mutual coupling reduction of slot antenna array by controlling surface wave propagation," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 1352-1357, February 2019.
doi:10.1109/TAP.2018.2883524

21. Liu, L., S. W. Cheung, and T. I. Yuk, "Compact MIMO antenna for portable UWB applications with band-notched characteristic," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 1917-1924, 2015.
doi:10.1109/TAP.2015.2406892

22. Choukiker, Y. K., S. K. Sharma, and S. K. Behera, "Hybrid fractal shape planar monopole antenna covering multiband wireless communications with MIMO implementation for handheld mobile devices," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 3, 1483-1488, March 2014.
doi:10.1109/TAP.2013.2295213

23. Lalbakhsh, A., A. A. Lotfi Neyestanak, and M. Naser-Moghaddasi, "Microstrip hairpin bandpass filter using modified minkowski fractal-shape for suppression of second harmonic," IEICE Trans. Electron., Vol. E95-C, No. 3, 378-381, March 2012.
doi:10.1587/transele.E95.C.378

24. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "Low-cost nonuniform metallic lattice for rectifying aperture near-field of electromagnetic bandgap resonator antennas," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 5, 3328-3335, May 2020.
doi:10.1109/TAP.2020.2969888

25. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, S. L. Smith, and B. A. Zeb, "Single-dielectric wideband partially reflecting surface with variable reflection components for realization of a compact high-gain resonant cavity antenna," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1916-1921, March 2019.
doi:10.1109/TAP.2019.2891232

26. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "A high-gain wideband EBG resonator antenna for 60 GHz unlicensed frequency band," 12th European Conference on Antennas and Propagation (EuCAP 2018), 2018.
doi:10.1109/TAP.2019.2891232

27. Papadopoulos, K. A., C. A. Papagianni, P. K. Gkonis, I. S. Venieris, and D. I. Kaklamani, "Particle swarm optimization of antenna arrays with efficiency constraints," Progress In Electromagnetics Research M, Vol. 17, 237-251, 2011.
doi:10.2528/PIERM11012504

28. Lalbakhsh, A., M. U. Afzal, and K. P. Esselle, "Multi-objective particle swarm optimization to design a time delay equalizer metasurface for an electromagnetic band gap resonator antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 912-915, 2016.

29. Jamshidi, M., A. Lalbakhsh, B. Mohamadzade, H. Siahkamari, and S. M. H. Mousavi, "A novel neural-based approach for design of microstrip filters," Int. J. Electron. Commun. (AEU), Vol. 110, 152847, 2019.
doi:10.1016/j.aeue.2019.152847

30. Wang, M., T.-H. Loh, Y. Zhao, and Q. Xu, "A closed-form formula of radiation and total efficiency for lossy multiport antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 12, 2468-2472, 2019.
doi:10.1109/LAWP.2019.2940382