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Mutual Coupling Reduction between Slotted-T MIMO Elements
for UWB Applications

Kudumu V. Prasad1, * and Makkapati V. S. Prasad2

Abstract—In the present scenario, multiple-input-multiple-output (MIMO) elements provide the
capacity to generate more than one radiation pattern with different polarizations, which show a
prodigious role in the modern telecommunication sector. A new two-element MIMO antenna with
minimization in mutual coupling is presented in this paper. The proposed design reduces mutual
coupling between antenna elements. The strip-line mechanism is used as a feed and is simulated using
HFSS v 15. MIMO element design is done with four T-shaped slots in all directions of the patch,
further enhancing the cross-correlation. MIMO antenna consists of two radiators on a 50×25 mm2 FR-
4 substrate. A T-shape ground stub, along with a slot, reduces mutual coupling (MC) and Impedance
Bandwidth (IBW) of the proposed design. The design provides multi-band characteristics in the entire
UWB range with practical applications like WiMAX (3.5 GHz), WLAN (5.9 GHz), X-band SATCOM
applications (7.9 GHz) and Radar, Mobile phones, and commercial WLAN (9.3 GHz). The spacing
between elements is in the order of 0.215λ0. MC reduction of 20 dB is achieved at every resonant
frequency.

1. INTRODUCTION

MIMO is one of the dynamic research areas that provide wireless system efficiency, increase channel
capacity, thus providing this technology as a key to the fifth generation (5G) networks, 4G, RFID,
Digital Home, and WLAN. MC between elements in a MIMO antenna is a metric while the MIMO
antenna performance is examined. When several antennas are nearby, they suffer from severe MC, which
leads to the loss of bandwidth, lower antenna efficiency, decreased SINR, and degraded performance
of diversity gain. MC’s effect occurs between closely spaced antennas due to the surface current flow
from the ports excited and surface waves. For portable devices with minimal space, mounting multiple
low MC elements is a challenge for the designers [1]. There are different methods to improve isolation
such as Electromagnetic Band Gap (EBG) structure [1, 16], shorting pins [2], metalized via wall [4],
inserting single split-ring resonator (SRR) in-ground plane [7, 14], parasitic branches [7], a fractal EBG
structure [8], defected ground structures (DGSs) [10–15], single lattice mushroom-like EBG [16, 19], a
slot structure perpendicular to the current on the surface of patches on a common ground plane [17],
and metamaterials [20].

A compact and wide-band MIMO element antenna for WLAN and WiMAX applications is studied
and analyzed to integrate an EBG to reduce the MC between the ports. The frequency operating range
is 2.01 to 3.92 GHz, which achieves a minimum MC of 29 dB [1]. In [2], isolation enhancement is done
with the shorting pins. Six metallic pins via loading near the adjacent edges improve the MC reduction
with different antenna polarizations. A minimum of 0.012λo separation is used between two element
edges. A square patch is modified so that, on the square radiator top, an L-shaped slot of inverted type
is introduced. Three slots on the right and left sides of the square radiator and an ohm symbol at the
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center are proposed. This antenna achieves multi-band characteristics at 2.2 GHz, 4.1 GHz, 5.5 GHz,
5.9 GHz, and 9.1 GHz [3]. A compact structure with a low profile are introduced in [4] for reducing MC.
In this, inverted H-shaped metal walls are used to reduce EM spatial coupling, and a folded T-branch
is implemented to reduce EM surface waves. The design in [4] operates between 2.44 GHz and 3 GHz.
A MIMO design for UWB applications with high isolation is proposed in [5].

The size of 30.1×20.5 mm2 is used for the two monopole elements. This design proposes a protruded
ground, and the feed-line bending is used as a technique. High isolation with low ECC for a MIMO design
is proposed in [6]. A separation of 0.13λ0 is used. Experimental results achieve isolation improvement
by 22 dB. In [7], a dual-band MIMO antenna operating at X, Ku bands is designed with a parasitic
element structure on an FR-4 substrate excited by orthogonal strip-line feeding.

Additionally, a single CSRR is used to improve performance characteristics. The proposed MIMO
antenna achieves |S12| < −26 dB suitable for X and Ku bands. A compact UWB-MIMO antenna of
fractal type is proposed using the iterated function system (IFS) [8]. A new technique termed self-
similar fractal is implemented to provide wide-band performance with miniaturization. A T-stub with
a slot improves the isolation of the proposed MIMO system. The proposed structure has 24 × 32 mm2

dimensions operating from 3.1 to 12.5 GHz UWB with the isolation about 16 dB. A detailed investigation
on reducing the MC in MIMO antennas using various mechanisms and structures is projected with
examples [9].

An FDTD method, along with DGS, is used to reduce MC of a two-element array. The comparison
of DGS structure with other techniques to analyze MC between two elements is done. In a MIMO
antenna with four ports, isolation is improved by proposing DGS and is improved by 7dB. The proposed
structure includes a patch with a square ring DGS etched in the ground. A very compact UWB-MIMO
antenna, consisting of two slot elements, is proposed with 22×26 mm2. A T-slot, ground-etched, is used
to reduce MC and improves the impedance matching. An antenna design for reducing MC for WLAN
application is proposed and consists of two radiating elements, six metal strips, ground, and a substrate.
About −42 dB MC at 5.8 GHz is obtained. A novel EBG with a metal strip is used to enhance MIMO
isolation for the WLAN application. A metal line strip is used in between the elements for reducing the
MC at 5.8 GHz. To eliminate scan blindness in a phased array, a U-shaped DGS is used. A U-shaped
DGS provides better MC reduction by suppressing surface wave propagation. A U-shaped DGS along
with patch array is studied with different distances, and the results show that the MC suppression is
increased with the reduction in element distance [10–15].

In [16], when the distance between the array elements is minimal, a strong MC appears. Periodic
structures like EBG are used to minimize the antenna array’s MC by reducing the substrate-based
surface waves at the operating frequency. The number of EBGs used is 13 × 2 structures, and the MC
is reduced to −59.36 dB at 5.8 GHz. In [17], a compact triple band-notched MIMO antenna for UWB
communication is proposed and designed with quarter-wavelength slots. These slots are placed between
two radiators, which provide notch bands for the frequencies 3.3–4.2 GHz, 5–6 GHz, and 7.2–8.6 GHz.
To reduce MC between patch elements, an I-shaped stub is used. In [18], a fractal regular slots monopole
for UWB is proposed.

In [19], an approach to suppress the surface waves between two H-shaped MIMO patches is
proposed. This proposed antenna uses an EBG as an isolator to minimize MC between the ports. In [20],
to reduce MC, a slot antenna array using an electric metamaterial is designed. This method consists
of an array of CSRRs between the two slots for reducing the MC propagation. Both complementary
fishnet structures and CSRRs are used for better isolation. With both the structures and gap between
elements being 3.4 mm, S12 achieves −14 dB isolation improvement at 2 GHz.

In [21], a band-notched MIMO antenna with a size of 22×36 mm2 for UWB applications is proposed.
To reduce MC, the design utilizes two monopole elements, a slot cut on the T-stub, a T-stub, and two
strips on the ground to generate notch frequency. Frequency 5.15–5.85 GHz is the notch band, and
the antenna operates from 3.1 to 11 GHz. MC < −15 dB. A fractal monopole of hybrid planar type is
presented for MIMO antenna implementation. This structure is the grouping of the Koch curve fractals
and the Minkowski island curve. The separation is 0.16λ0. A T-shape strip to improve the impedance
matching is introduced, and the slot is carved on the ground topside to enhance isolation between the
elements [22].

In [23], a novel bandpass filter of hairpin type with a modified Minkowski fractal geometry is
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proposed. The filters with the fractal shape can significantly suppress the second harmonic of the
filter design. In [24], a new all-metallic phase-correcting structure (AMPCS) is introduced for the
usage of Electromagnetic Bandgap Resonator Antennas (ERAs) to reduce the fabrication cost, and the
APMCS is fabricated with laser technology and tested for an ERA application to verify its performance.
In [25], a wide-band high-gain Resonant Cavity Antenna (RCA) with low-cost Partially Reflecting
Surface (PRS) is proposed, and it requires a single commercial dielectric slab. A negative transverse-
reflection magnitude gradient and a progressive reflection phase gradient are exhibited at 11.4 GHz
frequency by the nonuniform double-sided printed dielectric, which is a characteristic of PRS. The
directivity is 16.2 dBi at 11.4 GHz, and the peak gain is 15.75 dBi. In [26], an EBG resonator antenna’s
performance is analyzed at 60 GHz, and this antenna resonator achieves a directivity of 15.5 dB. For
this, a PRS composed of four rings with different permittivities is designed, which achieves a wide-band
radiation pattern. In [27], a MOPSO (Multi-Objective Stochastic) algorithm is proposed for a phased
array. To maximize diversity performance, Particle Swarm Optimization (PSO) algorithm is used for
the sidelobe suppression at maximum scan angle and minimizes the voltages induced at the receiver
frontend. Aperture efficiency and mismatching are the energy constraints that are considered as inputs
to the PSO algorithm. For this, an array with 16 dipoles is used to minimize the sidelobe level with 60◦
scanning rate and elements with λ/2 apart. In [28], for improving radiation patterns and directivity, an
efficient PSO algorithm is developed to design a near-field time delay equalizer metasurface (TDEM)
of ERAs. In [29], a design methodology based on Bayesian Regularization Back-Propagation (BRBP)
algorithm is proposed to design the microstrip filters. In this, to enhance the filter’s performance, a filter
is composed of stepped impedance resonators, and multiple open stubs are designed with the Artificial
Neural Network (ANN) technique at the operating frequency 2.087 GHz.

Various researches in the introduction have discussed various methods to reduce mutual coupling.
The antenna design proposed in this article is a miniaturized and straightforward design with T-shaped
stubs as one of the reduction techniques for mutual coupling compared to some of the antenna designs
proposed in the literature survey in the introduction section, and a comparison table is presented in
Section 5.

The article is organized in the following way. Antenna design with different parameter analysis is
explained in Section 2. Section 3 presents the study of the proposed design. Section 4 presents the
parametric analysis of the proposed design. Simulation results and measurement results are explained
in Section 5. Finally, Section 6 presents the conclusion.

2. PROPOSED ANTENNA DESIGN

Figure 1 shows a strip-line fed MIMO antenna with four slots of three different sizes on all the antenna
element’s four sides. This MIMO antenna is simulated and fabricated on an FR-4 with size Ws × Ls,
εr = 4.4, and tan δ = 0.002 using HFSS. A T-stub is positioned in between two T-shaped slotted MIMO
elements, shown in Figure 1. This technique uses a square element with Lp × Wp; four equal slots
of two different sizes are subtracted on all four sides with L1, L2, L3 lengths, and W1, W2, and W3

widths. This MIMO design is excited with a 50 Ω strip-line, and the distance between the two elements
is 10.75 mm.

A seven-stage MIMO design is shown in Figure 2 to explain the antenna progress.
The mathematical expressions for the antenna evolution stages are:
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(
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Figure 1. A proposed MIMO antenna structure.

(a) (b) (c) (d) (e)

(f) (g)

Figure 2. Proposed MIMO antenna evolution stages.

Length of the stub 2, L2 � L3 + 2(λ/4) (6)
Length of the stub 3, L1 � 2(L3) + 2(λ/4) (7)

The parameters optimized for the design are listed in Table 1. In this, a square MIMO element is
used and operates in the UWB frequency range with specific applications at WiMAX (3.5 GHz), WLAN
(5.9 GHz), X-band SATCOM (7.9 GHz) and Radar, Mobile phones, and commercial WLAN (9.3 GHz).
Rectangular slots with three different lengths of the MIMO element are used to resonate at different
frequencies.

The simulated S11 and S12 for the design proposed are shown in Figure 3. Similarly, the same
procedure is applied to all four sides of the patch at different evolution stages. Finally, the MIMO
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Table 1. Design parameters of the proposed MIMO design.

Parameter Ls Ws Lp Wp L1 L2 L3 W1 W2

Value (mm) 50 25 16 16 10 7.2 4 1 0.8
Parameter W3 Lf Wf Ls1 Ws1 Lg Ws Wt d

Value (mm) 50 25 16 16 10 7.2 4 1 0.8
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Figure 3. S11 and S12 of the proposed MIMO design.
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Figure 4. S11 for the different stages of the proposed MIMO.

antenna is represented in Figure 2(g) resonating from 2.77 GHz to 6.65 GHz with |S11| < −10 dB being
identified. In the proposed design, |S12| < −20 dB is observed. Figure 4 shows S11 for different MIMO
antenna stages, in which the antenna resonates from the square patch structure to the final design of
the MIMO antenna, suitable for WiMAX and WLAN.

A T-stub is positioned between slot-cut MIMO elements for necessary impedance matching. To
enhance MC, in the ground, a slot of a small portion is etched. Table 1 includes dimensions of the
proposed MIMO antenna.

3. STUDY OF PROPOSED ANTENNA

3.1. T-Shape Stub Effect

The concept of the T-shape stub used in the MIMO concept is proposed in [7, 21]. This T-stub offers
better impedance matching and improves MC. The S-parameters with and without T-stub for the T-
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slotted MIMO design are compared in Figures 5 and 6. From Figure 5, using a T-stub and making
the antenna structure as a T-slotted antenna, resonant peaks are shifted from 4.0 to 3.5 GHz, 7.5 to
7.9 GHz, and 10 to 9.3 GHz. This shift is due to the T-stub that acts as a reflector. S12 > −15 dB
over the entire UWB range with specific applications at WiMAX (3.5 GHz), WLAN (5.9 GHz), X-band
SATCOM applications (7.9 GHz) and Radar, Mobile phones, and commercial WLAN (9.3 GHz).

3.2. Effect of the Ground Slot

Figure 5 and Figure 6 show S-parameter analysis for the T-shaped slotted MIMO antenna with and
without slot on the ground. A small portion of the ground is cut as a slot to enhance isolation. It is
observed in the S11 plot, and resonant peaks are shifted from 4.0 to 3.5 GHz, 7.5 to 7.9 GHz, and 10
to 9.3 GHz by using a ground slot. S21 is improved by removing or subtracting a slot in the ground.
With the usage of the slot in the ground, the mutual coupling is reduced at WiMAX (3.5 GHz), WLAN
(5.9 GHz), X-band SATCOM applications (7.9 GHz) and Radar, Mobile phones, and commercial WLAN
(9.3 GHz) that makes S21 > −15 dB.

3.3. Analysis of the Distribution of Surface Current for the Minimizing MC

Surface current distribution (J) is analyzed for the minimization of MC among the MIMO elements.
The ground stub effect and slot on current density (J) at 3.5 GHz are analyzed in Figure 7. Figure 7
shows that port 1 is provided with strip-line feed and port 2 with 50 Ω terminating impedance. It is
identified that current reduction passes toward the stub on the ground and a slot, leading to surface
current reduction minimizing the MC. Figure 7(b) illustrates the surface current when port one is ended
with 50 Ω impedance, and port 2 is excited. Similar to the first case, here also, there is a reduction in
coupling current.
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(a)

(b)

(c)

Figure 7. Distribution of the surface currents, (a) antenna when Port 1 is excited, (b) antenna when
Port 2 is excited, (c) the proposed design when both the ports are excited.

4. ANTENNA PARAMETRIC ANALYSIS

The response of the MIMO antenna on isolation improvement and the parametric analysis based on
the distance between two patches are observed for |S11| & |S12| at d = 7 mm, d = 8mm, d = 9 mm,
d = 9.5 mm, d = 10 mm, & d = 10.75 mm with port 1 excited and port 2 with 50 Ω terminating
impedance. In this proposed method, one parameter is varied, and all the other parameters are static
to analyze S-parameters with one of the two ports excited.

4.1. Effect of Distance between Patch Elements

The distance variation between the patch elements will show an impact for various distances varying
from d = 7 mm to d = 10.75 mm, and the analysis of the MIMO antenna is shown in Figures 8 & 9.

From Figure 8, at distance d = 10.75 mm, resonating at 3.5 GHz, 5.9 GHz, 7.9 GHz, and 9.3 GHz,
S11 is −42.62 dB, −45.84 dB, −40.23 dB, and −34.56 dB, and at these resonant frequencies with distance
d = 10.75 mm, S12 is −45.26 dB, −44.83 dB, −41.25 dB, and −42.31 dB and is plotted in Figure 9. When
distance d = 10.75 mm, S11 is > −40 dB, and S12 is > −40 dB which shows that there is a reduction of
strong mutual coupling between two radiators.

When the patch distances are varied with d = 9 mm, 9.5 mm, 10 mm, S11 > −20 dB and
S12 > −20 dB. Distance variation from 7mm to 10.75 mm using parameter analysis, optimized distance
d = 10.75 mm, reduces the MC at WiMAX (3.5 GHz), WLAN (5.9 GHz), X-band SATCOM applications
(7.9 GHz) and Radar, Mobile phones, and commercial WLAN (9.3 GHz).
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4.2. Varying Parameter Lengths L1, L2, and L3 Effects

L1, L2, and L3 variations will affect the parameters like S11, S12, directivity, and gain. From Figure 10,
by varying L1, L2, and L3, S11 increases by 15 dB for UWB frequencies suitable for WiMAX (3.5 GHz),
WLAN (5.9 GHz), X-band SATCOM applications (7.9 GHz) and Radar, Mobile phones, and commercial
WLAN (9.3 GHz).
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5. SIMULATION AND MEASUREMENT RESULTS

5.1. S-Parameters and Radiation Performance

For the validation of the proposed design, an antenna is fabricated, and measured results are obtained
with Keysight (model N9916A) VNA. Simulated and measured results differ due to fabrication errors
and SMA connectors. Figure 11 illustrates the simulated and measured S-parameters. The IBW of the
design is 7.6 GHz, which ranges from 3.1 GHz to 10.7 GHz (fractional BW of 64.6%) with S21 below
−39 dB. The measured and simulated results are obtained by exciting one port and simultaneously with
50 Ω for the other port. The 2-D radiation plot of the proposed design in E-plane and H-plane for the
operating frequencies is illustrated in Figure 12.
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Figure 11. Simulated and measured S11 and S12 for the T-slotted MIMO design.

Figure 12 shows radiation patterns for the simulated design at the resonant frequency. A 4.95 dBi
measured gain is obtained for the fabricated design, and 5.80 dBi is the simulated realized peak gain,
shown in Figure 13. Figures 14 and 16 illustrate the H-plane and E-plane co-polarization and cross-
polarization patterns. Figure 15 illustrates the fabricated T-slotted MIMO antenna. A detailed
comparison of different antenna designs with the proposed structure is indicated in Table 2.

5.2. Diversity Performance of the Proposed Design

The capacity of the proposed MIMO design is validated using the parameters ECC and DG. The
parameter results and measured results are compared. ECC explains how accurately antenna-1
characteristic is associated with other antennas’ characteristic when they are nearby. ECC analysis
can be done using S-parameters as indicated [29]; the proposed design’s ECC is < 0.05, and the plot is
shown in Figure 17 Figure 18 shows the DG plot with 9.9 dB for operating frequency and indicates the
proposed design’s good diversity performance.

The ECC formula in terms of S12 is given below in terms of field-based equations in terms of θ
and Φ which is written in Equation (8) and indicates the radiation patterns of two different antennas’
correlation.

ρe =

∣∣∣∣
∫ 2π

0

∫ π

0
(XPR · Eθ1 · E∗

θ2 · Pθ + Eϕ1 · E∗
ϕ2 · Pϕ)dΩ

∣∣∣∣
2

∫ 2π

0

∫ π

0
(XPR·Eθ1 ·E∗

θ2 ·Pθ + Eϕ1 ·E∗
ϕ2 ·Pϕ)dΩ ×

∫ 2π

0

∫ π

0
(XPR·Eθ1 ·E∗

θ2 ·Pθ + Eϕ1 ·E∗
ϕ2 ·Pϕ)dΩ

(8)
DG is the decreased required receiving SNR for a given BER averaged over the fading. Explicitly, this
is the reduction in a fading margin obtained by minimizing the fading with the MIMO antenna.

DG = 10
√

1 − ECC (9)
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(a) (b)

(c) (d)

Figure 12. 2-D radiation patterns at (a) 3.5 GHz, (b) 5.9 GHz, (c) 7.9 GHz, (d) 9.3 GHz in E-Plane
and H-Plane of the proposed MIMO antenna (red color: simulated in E-Plane, blue color: measured
in E-Plane, pink color: simulated in H-Plane, green color: measured in H-Plane).
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Figure 13. Gain of the proposed MIMO design.
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Figure 14. Co- and cross-polarization in H-plane at 3.5 GHz.

(a) (b)

Figure 15. Fabricated model, (a) front view, (b) back view.

Figure 16. Co- and cross-polarization in E-plane at 3.5 GHz.
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Table 2. Comparison of the present work and those of previously reported works.

Reference
Antenna

Dimensions (mm)
S11 (dB) S12 (dB)

Frequency

(GHz)

Substrate

used

[2] 30 × 55 × 1.524 −22 −20 3.5
Rogers

RO4350B

[5] 20.5 × 30.1 × 0.787 −20 −25 3.1–10.6
RT/Duroid

5880

[7] 20 × 24 × 1.6 −32 −34 7.8 and 14.2
FR-4

Epoxy

[8] 24 × 32 × 0.8 > −10 > −15 3.1–12.5
FR-4

Epoxy

[13] 36 × 30 × 1.56 −25 −42 5.8
RT/Duroid

5880

[14] 20 × 46 × 1.6 −40 −22 5.8
FR-4

Epoxy

[19] 55 × 28 × 1.6 −25 −49 3.46–3.69
FR-4

Epoxy

Proposed

method
50 × 25 × 1.6

> −10 with four

resonant peaks at 3.5,

5.9, 7.9, and 9.3 GHz

> −15 with four

resonant peaks at 3.5,

5.9, 7.9, and 9.3 GHz

3.1–10.6
FR-4

Epoxy
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Figure 19. Radiation efficiency (%) of the proposed MIMO antenna.

DG depends on BER and has a maximum limit of the fading margin, irrespective of the number of
antennas used. The radiation efficiency is plotted in Figure 19. From the figure, the radiation efficiency
is greater than 95%. The total efficiency of the MIMO antenna is calculated using the formula [30].

Total Efficiency =
(
1 − |TARC|2) ∗ Radiation efficiency (10)

6. CONCLUSION

A T-slotted antenna with a size of 65 × 40 mm2 is investigated. Two T-slotted monopole elements
operate for WiMAX and WLAN applications in the range of 2.77 GHz–6.55 GHz with an impedance
bandwidth of 64.6%. To validate the design, a MIMO antenna with two elements is fabricated and
tested. The edge-to-edge spacing between the two radiators is only 0.215λo. A T-stub with a slot
improves isolation at the operating resonant frequencies 3.5 GHz, 5.9 GHz, 7.9 GHz, and 9.3 GHz with
S12 > −15 dB. Mutual coupling is significantly reduced by etching a T-shape stub using a slot on the
ground. The realized peak gain is 4.95 dBi for the fabricated antenna. Diversity gain (DG) is about
9.9 dB and ECC < 0.05, respectively, over the UWB range.
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