Vol. 106
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-10-06
Small-Cell Waveguide Antenna Array for E-Band Point to Point Wireless Communications
By
Progress In Electromagnetics Research C, Vol. 106, 29-44, 2020
Abstract
In this paper, a highly directive small-cell waveguide antenna array for point to point wireless communication in E-band radio frequency systems is presented. The antenna array is designed and dedicated for the paired bandwidths 71-76 and 81-86 GHz. It is composed of 32 x 32 horn elements with a total surface of ~100 x 100 mm2 to achieve a directivity ≥38 dBi, narrow beam (~2°) and low-level sidelobe ≤-26 dB. A compact stepped horn antenna element (SHE) (6.6 mm) is designed. It is 25% smaller than a standard horn element (in the same band) keeping the same aperture surface (3.4 x 3.4 mm2). Layer-by-layer micromachining process is employed for the fabrication. A compact feeding network (25 mm) is realized using ridged waveguide technique with a cut-off frequency of 55 GHz, much lower than standard WG one in the same band. A bow-tie multi-section waveguide polarizer rotator (±90°) is optimized and associated with the WG transitions to re-phase the fields applied to SHE elements. Electric discharge machining (EDM) process was used to manufacture a 4×4 sub-array prototype including the entire WG power-feed network. The antenna is characterized in an anechoic chamber, and experimental results are compared to 3-D electromagnetic simulations with good agreements over the two bands.
Citation
Mamadou B. Gueye, and Habiba Hafdallah Ouslimani, "Small-Cell Waveguide Antenna Array for E-Band Point to Point Wireless Communications," Progress In Electromagnetics Research C, Vol. 106, 29-44, 2020.
doi:10.2528/PIERC20072003
References

1. Dyadyuk, V., Y. J. Guo, and J. D. Bunton, "Multi-gigabit wireless communication technology in the E-band," 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronics Systems Technology, Wireless VITAE 2009, 2009.

2. Niu, Y., Y. Li, D. Jin, et al. "A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges," Wireless Networks, Vol. 21, No. 8, 2657-2676, 2015.
doi:10.1007/s11276-015-0942-z

3. Liu, J., A. Vosoogh, A. U. Zaman, et al. "A slot array antenna with single-layered corporate-feed based on ridge gap waveguide in the 60 GHz band," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1650-1658, 2018.
doi:10.1109/TAP.2018.2888730

4. Vosoogh, A., P.-S. Kildal, and V. Vassilev, "Wideband and high-gain corporate-fed gap waveguide slot array antenna with ETSI class II Radiation pattern in V-band," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 1823-1831, 2016.
doi:10.1109/TAP.2016.2634282

5. Liu, J., W. Hu, et al. "Hollow waveguide 32×32-slot array antenna covering 71–86 GHz band by the technology of a polyetherimide fabrication," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 9, 1635-1638, 2018.
doi:10.1109/LAWP.2018.2859582

6. Gallee, F., G. Landrac, and M. M. Ney, "Artificial lens for third-generation automotive radar antenna at millimetre-wave frequencies," IEE Proceedings-Microwaves, Antennas and Propagation, Vol. 150, No. 6, 470-476, 2003.
doi:10.1049/ip-map:20030745

7. Vosoogh, A., et al., "Compact integrated full-duplex gap waveguide-based radio front end for multi-Gbit/s point-to-point backhaul links at E-band," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 9, 3783-3797, 2019.
doi:10.1109/TMTT.2019.2919539

8. Wang, L., et al., "Wideband and dual-band high-gain substrate integrated antenna array for E-band multi-gigahertz capacity wireless communication systems," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 9, 4602-4611, 2014.
doi:10.1109/TAP.2014.2334357

9. Mehrpouyan, H., et al., "Improving bandwidth efficiency in E-band communication systems," IEEE Communications Magazine, Vol. 52, No. 3, 121-128, 2014.
doi:10.1109/MCOM.2014.6766096

10. Schafer, F., F. Gallee, G. Landrac, and M. Ney, "Optimum reflector shapes for anti-collision radar at 76 GHz," Microwave and Optical Technology Letters, Vol. 24, No. 6, 400-404, 2000.
doi:10.1002/(SICI)1098-2760(20000320)24:6<400::AID-MOP12>3.0.CO;2-4

11. Yang, J., I. Papageorgiou, A. Derneryd, and L. Manholm, "An E-band cylindrical reflector antenna for wireless communication systems," 7th European Conference on Antennas and Propagation, EuCAP 2013, Gothenburg, Sweden, Apr. 8–12, 2013.

12. Artemenko, A., A. Mozharovskiy, A. Maltsev, R. Maslennikov, A. Sevastyanov, and V. Ssorin, "Experimental characterization of E-band two-dimensional electronically beam-steerable integrated lens antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1188-1191, 2013.
doi:10.1109/LAWP.2013.2282212

13. Al-Nuaimi, M., K. Taher, and W. Hong, "Discrete dielectric reflectarray and lens for E-band with different feed," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 947-950, 2014.
doi:10.1109/LAWP.2014.2313569

14. Al-Nuaimi, Mu. K. T., W. Hong, and Y. Zhang, "Design of high-directivity compact-size conical horn lens antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 467-470, 2014.
doi:10.1109/LAWP.2013.2297519

15. Pan, B., et al., "A 60-GHz CPW-fed high-gain and broadband integrated horn antenna," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 1050-1056, 2009.
doi:10.1109/TAP.2009.2015815

16. Ghassemi, N. and K. Wu, "Planar high-gain dielectric-loaded antipodal linearly tapered slot antenna for E- and W-Band gigabyte point-to-point wireless services," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 1747-1755, 2013.
doi:10.1109/TAP.2012.2232269

17. Ghassemi, N. and K. Wu, "High-efficient patch antenna array for E-band gigabyte point-to-point wireless services," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1261-1264, 2012.
doi:10.1109/LAWP.2012.2224087

18. Ghassemi, N. and K. Wu, "Millimeter-wave integrated pyramidal horn antenna made of multilayer printed circuit board (PCB) process," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 9, 4432-4435, 2012.
doi:10.1109/TAP.2012.2207050

19. Deslandes, D. and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 2, 68-70, 2001.
doi:10.1109/7260.914305

20. Encinar, J. and J. Rebollar, "A hybrid technique for analyzing corrugated and noncorrugated rectangular horns," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 8, 961-968, 1986.
doi:10.1109/TAP.1986.1143930

21. Zhang, M., J. Hirokawa, and M. Ando, "An E-band partially corporate feed uniform slot array with laminated quasi double-layer waveguide and virtual PMC terminations," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 5, 1521-1527, 2011.
doi:10.1109/TAP.2011.2122301

22. Gueye, M. B., H. H. Ouslimani, S. N. Burokur, A. Priou, Y. Letestu, and A. Le Bayon, "Antenna array for point-to-point communication in E-band frequency range," IEEE International Symposium Antennas and Propagation (APSURSI), 2077-2079, Jul. 2011.

23. FanHong, M., H. H. Ouslimani, and M. B. Gueye, Electronics Letters, Vol. 51, No. 22, 1730-1732, 2015.
doi:10.1049/el.2015.2441

24. Ouslimani, H. H. and F. Meng, "Design of large-band highly directive antenna in the millimeter waves range at 80 GHz," 2019 IEEE International Symposium on Antennas and Propagation and URSI Radio Science Meeting, 1097-1098, IEEE, 2019.
doi:10.1109/APUSNCURSINRSM.2019.8889366

25. Chacko, B., G. Augustin, and T. A. Denidni, "FPC antennas: C-band point-to-point communication systems," IEEE Antennas and Propagation Magazine, Vol. 58, No. 1, 56-64, 2016.
doi:10.1109/MAP.2015.2501240

26. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.

27. ETSI (European Telecommunications Standards Institute), European Standard EN 302 217-4-2, , Fixed radio systems; Characteristics and requirements for point-to-point equipment and antennas; Part 4-2: Antennas; Harmonized EN covering the essential requirements of article 3.2 of R&TTE directive, 2–35, 2010, http://www.etsi.org and https://www.google.com/search?hl=fr&q=Final+draft+ETSI+EN+302+217-4-2+V1.4.1+(2008-11).

28. HPCPE-80, , High performance parabolic reflector antenna, single-polarized, 71–86 GHz, https://www.radiowaves.com/en/product/hpcpe-80 and https://www.radiowaves.com/en/product/hplp2-80. 2020.

29. Migliaccio, C., B. D. Nguyen, C. Pichot, et al. "Fresnel reflector antennas formm-Wave helicopter obstacle detection radar," IEEE 2006 First European Conference on Antennas and Propagation, 1-5, 2006.

30. Gomez, J., A. Tayebi, J. de Lucas, et al. "Metal-only Fresnel zone plate antenna for millimetre-wave frequency bands," IET Microwaves, Antennas & Propagation, Vol. 8, No. 6, 445-450, 2014.
doi:10.1049/iet-map.2013.0196

31. Wriedt, T., et al., "Rigorous hybrid field theoretic design of stepped rectangular waveguide mode converters including the horn transitions into half-space," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 6, 780-790, 1989.
doi:10.1109/8.29365

32. Jorge, A. R.-C., R. M.-G. Jose, and M. R. Jesus, "Multi-section bow-tie steps for full-band waveguide polarization rotation," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 7, 375-377, Jul. 2010.

33. Chen, L., A. Arsenovic, J. R. Stanec, T. J. Reck, A. W. Lichtenberger, R. M. Weikle, II, and N. S. Barker, "A micromachined terahertz waveguide 90 twist," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 5, 234-236, May 2011.
doi:10.1109/LMWC.2011.2127467

34. Kirilenko, A., D. Y. Kulik, and L. A. Rud, "Compact 90 twist formed by a double-corner-cut square waveguide section," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 7, 1633-1637, Jul. 2008.
doi:10.1109/TMTT.2008.925570

35. Kirilenko, A., D. Y. Kulik, and L. A. Rud, "Compact broadband 90 twist based on square waveguide section with two stepped corner ridges," Microwave Opt. Technol. Lett., Vol. 51, No. 3, 851-854, Mar. 2009.
doi:10.1002/mop.24161

36. Beis, K. and U. Rosenberg, Waveguide Twist, U.S. Patent 6 879 221 B2, Apr. 12, 2005.

37. Zhang, B., et al., "Metallic, 3D-printed, K-band-stepped, double-ridged square horn antennas," Applied Sciences, Vol. 8, No. 1, 33, 2017.
doi:10.3390/app8010033

38. Zhang, B., Y.-X. Guo, H. Zirath, et al. "Investigation on 3-D-printing technologies for millimeter-wave and terahertz applications," Proceedings of the IEEE, Vol. 105, No. 4, 723-736, 2017.
doi:10.1109/JPROC.2016.2639520

39. Hirtenfelder, F., Effective antenna simulations using CST microwave studio R, Apr. 2007, DOI: 10.1109/INICA.2007.4353972, Source: IEEE Xplore https://www.3ds.com/fr.

40. EMPIRE XPU, , , http://www.empire.de.

41. ANT32, CT Systems, , https://www.ctsystemes.com.

42. Recioui, A., "Sidelobe level reduction in linear array pattern synthesis using particle swarm optimization," Journal of Optimization Theory and Applications, Vol. 153, No. 2, 497-512, 2012.
doi:10.1007/s10957-011-9953-9

43. Hodjat, F. and S. et Hovanessian, "Nonuniformly spaced linear and planar array antennas for sidelobe reduction," IEEE Transactions on Antennas and Propagation, Vol. 26, No. 2, 198-204, 1978.
doi:10.1109/TAP.1978.1141812

44. Oraizi, H. and M. Fallahpour, "Nonuniformly spaced linear array design for the specified beamwidth/sidelobe level or specified directivity/sidelobe level with coupling consideration," Progress In Electromagnetics Research, Vol. 4, 185-209, 2008.
doi:10.2528/PIERM08072302