Vol. 103
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-07-16
Wideband Dual-Polarized SIW Cavity-Backed Patch Antenna with Multimode Characteristics
By
Progress In Electromagnetics Research C, Vol. 103, 237-249, 2020
Abstract
A new wideband dual-polarized patch antenna using substrate-integrated waveguide (SIW) technology is proposed in this paper. The antenna is composed of a patch radiator and a square SIW cavity. The square patch is internally embedded in the square SIW cavity with a surrounded slot. A pair of L-shaped probes are used for the excitation of the orthogonal linearly-polarized signals. The dominant resonant mode of the square patch resonator (TM010) and the modes of the SIW cavity (TE110 and TE120/TE210) are employed to achieve a wide impedance bandwidth under these resonances. By introducing two shorting pins, the isolation between two feeding ports can be enhanced to more than 21 dB. The resonant properties of these modes are investigated based on the cavity model theory. Then, their resonant frequencies are discussed to provide information for designing and optimizing such an antenna. For demonstration, a prototype is fabricated and measured. The measured results show that the proposed antenna achieves a wide impedance bandwidth of about 66.7% (3.71-7.43 GHz) and 70.9% (3.58-7.52 GHz) for horizontal and vertical polarizations, respectively. A stable gain in the range of 7.15 to 8.03 dBi is obtained within the operating band. Due to the SIW cavity-backed structure, the antenna shows unidirectional radiation patterns and low back-lobe radiation at the resonant frequencies. Thus, the antenna is highly suitable for the base station antenna that is required to cover the bandwidth of 5.5 GHz WiMAX and 5.2/5.8 GHz WLAN systems.
Citation
Jiao-Jiao Xie, and Zi Chen, "Wideband Dual-Polarized SIW Cavity-Backed Patch Antenna with Multimode Characteristics," Progress In Electromagnetics Research C, Vol. 103, 237-249, 2020.
doi:10.2528/PIERC20060901
References

1. Alieldin, A., Y. Huang, S. J. Boyes, and M. Stanley, "A reconfigurable broadband dual-mode dual- polarized antenna for sectorial/omnidirectional mobile base stations," Progress In Electromagnetics Research, Vol. 163, 1-13, 2018.
doi:10.2528/PIER18050206

2. Tang, Z., Z. Zhao, Y. Li, and Y.-Z. Yin, "A wideband dual-polarized dipole antenna for base station applications," Progress In Electromagnetics Research Letters, Vol. 82, 33-39, 2019.
doi:10.2528/PIERL19010104

3. Zhang, Y., S. Lin, S. Yu, S. Liu, G. Liu, and A. D. Denisov, "Design and analysis of a broadband high isolation dual-polarized omnidirectional antenna," Progress In Electromagnetics Research B, Vol. 85, 65-83, 2019.
doi:10.2528/PIERB19051303

4. Cheng, H. R., X.-Q. Chen, L. Chen, and X.-W. Shi, "Design of a fractal dual-polarized aperture coupled microstrip antenna," Progress In Electromagnetics Research Letters, Vol. 9, 175-181, 2009.
doi:10.2528/PIERL09060102

5. Moradi, K. and S. Nikmehr, "A dual-band dual-polarized microstrip array antenna for base stations," Progress In Electromagnetics Research, Vol. 123, 527-541, 2012.
doi:10.2528/PIER11111610

6. Liu, C., J.-L. Guo, Y.-H. Huang, and L.-Y. Zhou, "A novel dual-polarized antenna with high isolation and low cross polarization for wireless communication," Progress In Electromagnetics Research Letters, Vol. 32, 129-136, 2012.
doi:10.2528/PIERL12032805

7. Pirhadi, A. and M. Hakkak, "Using electromagnetic bandgap superstrate to enhance the bandwidth of probe-fed microstrip antenna," Progress In Electromagnetic Research, Vol. 61, 215-230, 2006.
doi:10.2528/PIER06021801

8. Malekpoor, H. and S. Jam, "Ultra-wideband shorted patch antennas fed by folded-patch with multi resonances," Progress In Electromagnetics Research B, Vol. 44, 309-326, 2012.
doi:10.2528/PIERB12081607

9. Bozzi, M., A. Georgiadis, and K. Wu, "Reviews of substrate-integrated waveguide circuits and antennas," IET Microw. Antennas Propag., Vol. 5, 909-920, 2011.
doi:10.1049/iet-map.2010.0463

10. Guan, D.-F., Z.-P. Qian, W.-Q. Cao, L.-Y. Ji, and Y.-S. Zhang, "Compact SIW annular ring slot antenna with multiband multimode characteristics," IEEE Trans. Antennas Propag., Vol. 63, 5918-5922, 2015.
doi:10.1109/TAP.2015.2487516

11. Srivastava, G. and A. Mohan, "A diffrential dual-polarized SIW cavity-backed slot antenna," IEEE Trans. Antennas Propag., Vol. 67, 3450-3454, 2019.
doi:10.1109/TAP.2019.2900380

12. Chaturvedi, D., A. Kumar, and S. Raghavan, "An integrated SIW cavity-backed slot antenna- triplexer," IEEE Antennas Wireless Propagat. Lett., Vol. 17, 1557-1560, 2018.
doi:10.1109/LAWP.2018.2855051

13. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Boston, MA, USA, 2001.

14. Liu, Q., L. Zhu, J. Wang, and W. Wu, "Wideband low-profile differential-fed patch antennas with an embedded SIW cavity under dual-mode resonance," IEEE Trans. Antennas Propag., Vol. 67, 4235-4240, 2019.
doi:10.1109/TAP.2019.2911193

15. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Trans. Microw. Theory Techn., Vol. 53, 66-73, 2005.
doi:10.1109/TMTT.2004.839303