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Wideband Dual-Polarized SIW Cavity-Backed Patch Antenna
with Multimode Characteristics

Jiao-Jiao Xie1, 2, * and Zi Chen2

Abstract—A new wideband dual-polarized patch antenna using substrate-integrated waveguide (SIW)
technology is proposed in this paper. The antenna is composed of a patch radiator and a square SIW
cavity. The square patch is internally embedded in the square SIW cavity with a surrounded slot. A
pair of L-shaped probes are used for the excitation of the orthogonal linearly-polarized signals. The
dominant resonant mode of the square patch resonator (TM010) and the modes of the SIW cavity (TE110

and TE120/TE210) are employed to achieve a wide impedance bandwidth under these resonances. By
introducing two shorting pins, the isolation between two feeding ports can be enhanced to more than
21 dB. The resonant properties of these modes are investigated based on the cavity model theory. Then,
their resonant frequencies are discussed to provide information for designing and optimizing such an
antenna. For demonstration, a prototype is fabricated and measured. The measured results show that
the proposed antenna achieves a wide impedance bandwidth about 66.7% (3.71–7.43 GHz) and 70.9%
(3.58–7.52 GHz) for horizontal and vertical polarizations, respectively. A stable gain in the range of 7.15
to 8.03 dBi is obtained within the operating band. Due to the SIW cavity-backed structure, the antenna
shows unidirectional radiation patterns and low back-lobe radiation at the resonant frequencies. Thus,
the antenna is highly suitable for the base station antenna that is required to cover the bandwidth of
5.5 GHz WiMAX and 5.2/5.8 GHz WLAN systems.

1. INTRODUCTION

With the rapid development of wireless communication, capacity issue is becoming critical due to the
expansion of wireless services and the increase of mobile subscribers. Research work has been focused
on frequency reuse and polarization diversity by using two orthogonal polarizations [1, 2]. Antennas
with polarization diversity performance are widely studied and adopted to mitigate the multipath
fading problem. Moreover, they are able to provide double transmission channels and increase channel
capacity in many applications [3]. Therefore, dual-polarized antennas with wide impedance bandwidth
and unidirectional radiation characteristics are highly desirable for modern wireless communication
systems.

Microstrip patch antennas (MPA) have been widely used to achieve dual polarization performance
due to their various advantages including low profile, light weight, and easy fabrication [4]. A dual-band
dual-polarized microstrip antenna was excited by a corporate feed network in [5]. To achieve appropriate
matching in both bands, a three-section Chebyshev transformer was designed. Four petaloid patches
were used in [6] to produce dual polarization radiation. To restrain the cross polarization, a square
metal fence was introduced. However, almost all of the reported patch antennas often suffer from a
narrow bandwidth. To overcome the inherent restriction of the patch antennas, several methods have
been proposed. With the use of electromagnetic bandgap superstrates, the impedance bandwidth of a
probe-fed microstrip antenna was enhanced [7]. A folded ramp-shaped feed and unequal arms were used
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for a probe-fed shorted patch antenna [8]. Five resonances were excited to obtain a wide impedance
bandwidth. Nevertheless, most of the proposed antennas were bi-directional radiation types. For this,
it is still a challenging task to design a wide dual-polarized patch antenna with stable unidirectional
radiation characteristics.

Recently, substrate integrated waveguide (SIW) cavity has been introduced in antenna design for
its advantages of low insertion loss and high radiation efficiency. By using metallic via-holes connecting
the top and bottom metal plates, SIW cavity realizes waveguide-based component in planar substrate
while maintaining comparable performance [9]. In [10], a circular SIW cavity was used for probe-fed
antenna to achieve multiband characteristics. Three separate operating modes were excited by a single
probe. Also, a square SIW cavity was proposed to improve the gain of the dual-polarized antenna [11].
The diagonal TE120 and TE210 modes of the cavity were excited for dual polarization performance. In
addition, two rectangular SIW cavities were introduced in [12], and the patch mode (TM010) and cavity
modes (TE110/TE120) were excited to resonate at distinct frequencies. The antenna-triplexer had a
high isolation and unidirectional radiation pattern.

In this paper, a square patch is internally embedded in the square SIW cavity to construct a
wideband dual-polarized patch antenna. A pair of L-shaped probes are used for the excitation of the
orthogonal linearly-polarized signals. As the signal is delivered to the patch radiator and then coupled
to the SIW cavity, the patch mode (TM010) incorporating the cavity modes (TE110 and TE120/TE210) is
excited to achieve a wide operating band. With the use of two shorting pins, the isolation between two
feeding ports can be improved. Due to the introduction of the SIW cavity, good electrical characteristics
such as unidirectional radiation pattern and stable gain can be achieved. Details of the antenna design
and experimental results are presented and analyzed.

2. ANTENNA DESIGN AND MECHANISM

The configuration of the proposed dual-polarized SIW cavity-backed patch antenna and its detailed
dimensions are shown in Figure 1. The antenna consists of a square patch, a square SIW cavity with

Figure 1. Antenna configuration and detailed dimensions.
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a surrounded aperture, a pair of L-shaped probes, and two shorting pins. The square patch with a
distance of 0.08λ0 (λ0 is the free space wavelength at the center frequency) from the ground plane is
printed on a 1-mm-thick Rogers 5870 substrate. The side length of the square patch is calculated using
the equation defined in [13]. It has been adjusted such that the patch radiates in the fundamental
TM010 mode. The SIW cavity is formed by connecting the top and bottom copper claddings with
metallic pins, which form the lateral conducting walls. To avoid energy leakage from the metallic pins,
the diameter and pitch of metallic pins are carefully chosen based on the guidelines suggested in [14].
The dimension of the square SIW cavity is calculated from the waveguide equivalence model described
in [15]. It has been estimated to support TE110 and TE120/TE210 modes, respectively. A square slot
is etched in the middle of the SIW cavity, which is excited with the help of two L-shaped probes. To
achieve good impedance matching, two pairs of conducting strips are added in the slot. With the use of
two shorting pins connecting the square patch to the ground plane, the isolation between two feeding
ports is improved. Two SMA connectors located under the ground plane are connected to the ends of
the L-shaped probes. The antenna radiates 0◦ and 90◦ linearly-polarized waves. When Port 1 is excited
and Port 2 connected to a match load, the antenna is 0◦ polarization (similarly Port 2 excites 90◦
polarized wave). The key parameters are optimized using Ansoft High Frequency Structure Simulator
(HFSS) software. The optimum design parameters are shown in Table 1.

To explain the operating mechanism, four antennas, namely, Antennas I–IV, are used herein as
reference antennas for demonstration of the proposed antenna as shown in Figure 2. The design starts

(a) (b)

(c) (d)

Figure 2. Configurations of four reference antennas. (a) Antenna I. (b) Antenna II. (c) Antenna III.
(d) Antenna IV.
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Table 1. Optimal geometrical parameters of the proposed antenna.

Parameters W L W1 Hf Lf h

Unit (mm) 50 44 23 3.9 6.7 4.7
Parameters d p g r s1 s2

Unit (mm) 1 11 1 1.1 5.5 0.8

with Antennas I and II, which are square patch resonator and square SIW cavity with a surrounded
aperture. The same dimensions as listed in Table 1 are used for all these antennas.

In the case of Antenna I, a square patch is chosen as the radiation patch. The side length of the
patch is adjusted such that the patch radiates in the fundamental TM010 mode and resonates at 4.2 GHz.
The corresponding field distribution is shown in Figure 3. It can be observed that the maximum field
concentrates in the outer edge of the square patch. In the case of Antenna II, a square slot is etched in
the middle of the square SIW cavity. Due to slot loading, the cavity modes (TE110 and TE120/TE210)
get perturbed and generate the modified modes TE110 and TE120/TE210 toward the higher frequencies
at 5.1 and 6.8 GHz, respectively. Their field distributions are shown in Figure 4. It can be found
that the original cavity mode TE110 is influenced significantly by the slot, and the maximum field is
concentrated in the outer shortened aperture of the cavity. On the other hand, field distribution of the
original TE120/TE210 mode is slightly influenced by the slot. In the modified TE120/TE210 mode, the
maximum field concentrates in the shortened outer aperture.

(a) (b)

Figure 3. Simulated H-field distributions in Antenna I at 4.2 GHz. (a) TM010 mode (Port 1 excitation).
(b) TM010 mode (Port 2 excitation).

Thus, Antenna III can be constructed by embedding the square patch in the square aperture of
the SIW cavity. Its frequency response is depicted in Figure 5. The expected modes in Antennas I
and II are all generated in Antenna III with few changes. Meanwhile, three resonant frequencies are
obtained over the simulated frequency band. Due to the nested configuration, an additional shunt
capacitance is generated which affects the resonant properties of the antenna. To compensate this and
achieve good impedance matching, Antenna IV is constructed by introducing two pairs of conducting
strips in the slot. As a result, the modes around the resonant frequencies move in the close proximity,
and individual bandwidths get merged in the desired frequency band. However, because of the mixed
coupling associated with the electric and magnetic couplings, the port isolation decreases to 12 dB.
Therefore, the proposed antenna as shown in Figure 1 is constructed, in which two shorting pins are
introduced in the square patch. The simulated isolation of the proposed antenna is given in Figure 6,
accompanied with that of Antenna IV for intuitive comparison. It is found that the isolation between
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(a) (b)

(c) (d)

Figure 4. Simulated H-field distributions in Antenna II. (a) Modified TE110 mode at 5.1 GHz (Port 1
excitation). (b) Modified TE110 mode at 5.1 GHz (Port 2 excitation). (c) Modified TE120 mode at
6.8 GHz (Port 1 excitation). (d) Modified TE210 mode at 6.8 GHz (Port 2 excitation).

Figure 5. Simulated S11 of referenced Antennas
I, II, III, and IV.

Figure 6. Simulated isolation of Antenna IV and
the proposed antenna.
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two feeding ports can be enhanced to more than 21 dB over the operating band by using the shorting
pins.

The simulated field distributions of the proposed antenna at three resonant frequencies of 3.9, 5.3,
and 6.7 GHz are shown in Figure 7. At the lower frequency (3.9 GHz), the field is focused on the square
patch, thereby indicating effective excitation of the modified patch mode TM010. Meanwhile, at the

(a) (b)

(c) (d)

(e) (f)

Figure 7. Simulated H-field distributions in the proposed antenna. (a) Modified TM010 mode at
3.9 GHz (Port 1 excitation). (b) Modified TM010 mode at 3.9 GHz (Port 2 excitation). (c) Modified
TE110 mode at 5.3 GHz (Port 1 excitation). (d) Modified TE110 mode at 5.3 GHz (Port 2 excitation).
(e) Modified TE120 mode at 6.7 GHz (Port 1 excitation). (f) Modified TE210 mode at 6.7 GHz (Port 2
excitation).
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middle and higher frequencies (5.3 and 6.7 GHz), the field is concentrated around the SIW cavity, thus
successfully exciting the modified cavity modes TE110 and TE120/TE210.

3. PARAMETRIC STUDY

To analyze the effects of the key structure parameters on the antenna performance, a parametric study
is performed with HFSS. When one parameter is studied, the others are kept constant. Because of the
symmetrical configuration, only S11 is presented in this section. The parametric study provides a useful
information for designing and optimizing such an antenna.

At first, the function of the square patch is studied. Figure 8 shows the simulated reflection
coefficient of the proposed antenna for various W1. As W1 increases from 23 mm to 25 mm, it is
observed that the lower and higher resonant frequencies shift down dramatically, while the middle
resonant frequency changes slightly. This shift is found due to increment in the dimension of the square
patch and extension in the effective aperture of the SIW cavity. Additionally, a larger W1 worsens the
impedance matching in the whole operating band. Thus, W1 = 23 mm was chosen as the length of the
square patch for good impedance matching.

Figure 8. Effect of the square patch (W1) on the
antenna performance.

Figure 9. Effect of the conducting strip (r) on
the antenna performance.

Then, to demonstrate the function of the conducting strip, the simulated reflection coefficient of the
proposed antenna for various r is given in Figure 9. It can be seen that the width of the conducting strip
has a significant effect on the antenna performance. The increase of r from 1.1 mm to 3.1 mm causes
a lower resonant frequency in the middle band and a higher resonant frequency in the lower band. In
addition, over increasing the width of the conducting strip will cause poorer impedance matching at the
higher resonant frequency. Thus, r = 1.1 mm was chosen for wide impedance bandwidth.

Moreover, the influence of the position of the L-shaped probe on the antenna performance is
exhibited. Figure 10 shows the simulated reflection coefficient of the proposed antenna for various s1.
As depicted in the graph, good impedance matching can be achieved by adjusting the position of the
feeding probe. A smaller position s1 gives better impedance matching in the higher band. However,
over decreasing the position of the feeding probe will cause poorer impedance matching in the lower
band. Therefore, s1 = 6 mm was chosen as the position of the L-shaped probe for good impedance
matching.

Finally, the effect of the SIW cavity on the antenna performance is illustrated. Figure 11(a) shows
the simulated reflection coefficient of the proposed antenna for various L. From the graph, it is clearly
visible that the middle and higher resonant frequencies are very sensitive to the length of the SIW cavity.
When L increases from 44 mm to 46 mm, both the middle and higher resonant frequencies decrease,
due to increment in the dimension of the SIW cavity. Therefore, L was selected to be 44 mm for good
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Figure 10. Effect of the L-shaped probe (s1) on the antenna performance.

(a) (b)

Figure 11. Effect of the SIW cavity on the antenna performance. (a) Length of the SIW cavity (L).
(b) Height of the SIW cavity (h).

impedance matching and compact structure. Additionally, the simulated reflection coefficient of the
proposed antenna for various h is given in Figure 11(b). As h increases from 3.9 mm to 5.5 mm, the
middle resonant frequency shifts down dramatically, while the lower and higher resonant frequencies
change slightly. Meanwhile, a thicker height gives wider impedance bandwidth. However, over increasing
the height of the SIW cavity will cause poorer impedance matching in the higher band. Thus, h was
selected to be 4.7 mm for good impedance matching.

Furthermore, to illustrate the effect of the diameter and pitch of metallic pins, the simulated
radiation gain at resonant frequencies of the discussed modes under various dimensions is given in
Figure 12. The effect of the pin diameter (d) on the radiation gain is investigated with d to be selected
as 0.5, 1, and 1.5 mm, respectively. As shown in the graph, good tendency can be found by choosing
d = 1 mm as the diameter of the metallic pins. Moreover, when p increases from 5.5 mm to 22 mm, the
radiation gain of TM010 rapidly rises at first and then hovers around 7.81 dBi, while the gain of TE110

and TE120 rises at first and then decreases slightly. Thus, p was selected to be 11 mm for good radiation
gain.
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(a) (b)

(c)

Figure 12. Effect of the diameter (d) and pitch (p) of metallic pins on the radiation gain. (a) Patch
mode TM010. (b) Cavity mode TE110. (c) Cavity mode TE120.

4. RESULTS AND DISCUSSION

To validate the presented design method, a prototype of the proposed antenna shown in Figure 13 is
fabricated according to the optimum dimensions shown in Table 1. The antenna is measured with
WILTRON 37269A vector network analyzer and a fully automated anechoic chamber. Figure 14
shows the measured reflection coefficient and isolation of the proposed antenna. The measured −10 dB
impedance bandwidths of the proposed antenna are 66.7% (3.71–7.43 GHz) and 70.9% (3.58–7.52 GHz)
for horizontal and vertical polarizations, respectively, both covering the 5.2/5.8 GHz wireless local area
network (WLAN) and 5.5 GHz WiMAX bands. A slight discrepancy between the two results is observed,
which may be attributed to the fabrication imperfection. The measured isolation between the two
feeding ports is better than 21 dB in the whole operating band.

The measured radiation patterns of the proposed antenna at 3.9, 5.3, and 6.7 GHz for port 1 and
port 2 are plotted in Figure 15. As shown in the figures, the antenna has good unidirectional radiation
patterns. The main beam of the radiation is always fixed in the broadside z-direction. It is caused
by the introduction of the cavity-backed configuration, which can reinforce the radiating power in the
broadside direction and suppress it in the back side. The overall front-to-back-ratio is better than
16.7 dB for each resonant frequency. In addition, the cross-polarization levels at both feeding ports are
less than −20 dB within the main lobe.
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(a) (b)

Figure 13. Photograph of the fabricated prototype. (a) Top view. (b) Bottom view.

Figure 14. Measured S parameters of the proposed antenna.

port 1 port 2(a)
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port 1 port 2

port 1 port 2

(b)

(c)

Figure 15. Measured radiation patterns of the proposed antenna at (a) 3.9 GHz, (b) 5.3 GHz, and (c)
6.7 GHz.

The measured and simulated gains of the proposed antenna in the whole operating band are given
in Figure 16. Good agreement between the measured and simulated results is obtained, and a slight
reduction discrepancy between them is mainly brought about from the unexpected losses in the feeding
circuit and SMA probes. In addition, a stable gain in the range of 7.15 to 8.03 dBi is obtained over
the operating band. There is a little difference between two feeding ports, which may be caused by the
asymmetric factors brought in the fabrication process.
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Figure 16. Measured and simulated gain of the proposed antenna.

5. CONCLUSION

In this paper, a wideband dual-polarized patch antenna is presented based on the patch resonator and
SIW cavity. By embedding a square patch in the square SIW cavity, multiple resonant modes are
generated, and they are mixed coupling, thus creating three resonances for wide bandwidth. Then, two
shorting pins are loaded to improve the isolation between two feeding ports. The resonant frequency
properties of the patch mode (TM010) and cavity modes (TE110 and TE120/TE210) are studied to provide
information for designing and optimizing such an antenna. Due to its wide impedance bandwidth,
unidirectional radiation pattern, and stable gain, the proposed antenna is a good candidate for base
station antenna applications.
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