Vol. 105
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-09-17
Three-Dimensional Magnetic Resonance Electrical Properties Tomography Based on Linear Integral Equation Derived from the Generalized Cauchy Formula
By
Progress In Electromagnetics Research C, Vol. 105, 147-159, 2020
Abstract
Magnetic resonance electrical properties tomography has attracted attentions as an imaging modality for reconstructing the electrical properties (EPs), namely conductivity and permittivity, of biological tissues. Current reconstruction algorithms assume that EPs are locally homogeneous, which results in the so-called tissue transition-region artifact. We previously proposed a reconstruction algorithm based on a Dbar equation that governed electric fields. The representation formula of its solution was given by the generalized Cauchy formula. Although this method gives an explicit reconstruction formula of EPs when two-dimensional approximation holds, an iterative procedure is required to deal with three-dimensional problems, and the convergence of this method is not guaranteed. In this paper, we extend our previous method to derive an explicit reconstruction formula of EPs that is effective even when the magnetic field and EPs vary along the body axis. The proposed method solves a linear system of equation derived from the generalized Cauchy formula using the conjugate gradient method with fast Fourier transform algorithm instead of directly performing a forward calculation, as was done in our previous method. Numerical simulations with cylinder and human-head models and phantom experiments show that the proposed method can reconstruct EPs precisely without iteration even in the three-dimensional case.
Citation
Motofumi Fushimi, and Takaaki Nara, "Three-Dimensional Magnetic Resonance Electrical Properties Tomography Based on Linear Integral Equation Derived from the Generalized Cauchy Formula," Progress In Electromagnetics Research C, Vol. 105, 147-159, 2020.
doi:10.2528/PIERC20052101
References

1. Katscher, U., D.-H. Kim, and J. K. Seo, "Recent progress and future challenges in MR electric properties tomography," Comput. Math. Methods Med., Vol. 2013, 1-11, 2013.

2. Zhang, X., J. Liu, and B. He, "Magnetic-resonance-based electrical properties tomography: A review," IEEE Rev. Biomed. Eng., Vol. 7, 87-96, 2014.

3. Katscher, U. and C. A. T. van den Berg, "Electric properties tomography: Biochemical, physical and technical background, evaluation and clinical applications," NMR Biomed., Vol. 30, No. 8, 1-15, 2017.

4. Liu, J., Y. Wang, U. Katscher, and B. He, "Electrical properties tomography based on B1 maps in MRI: Principles, applications, and challenges," IEEE Trans. Biomed. Eng., Vol. 64, No. 11, 2515-2530, 2017.

5. Joines, W. T., Y. Zhang, C. Li, and R. L. Jirtle, "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Med. Phys., Vol. 21, No. 4, 547-550, 1994.

6. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, W. Temple, D. Mew, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, No. 20, 6093-6115, 2007.

7. Li, Z., W. Wang, Z. Cai, S. Han, S. Lin, L. He, M. Chen, D. Pan, G. Deng, S. Duan, and S. X. Xin, "Variation in the dielectric properties of freshly excised colorectal cancerous tissues at different tumor stages," Bioelectromagnetics, Vol. 38, No. 7, 522-532, 2017.

8. Collins, C. M., W. Liu, J. Wang, R. Gruetter, J. T. Vaughan, K. Ugurbil, and M. B. Smith, "Temperature and SAR calculations for a human head within volume and surface coils at 64 and 300 MHz," J. Magn. Reson., Vol. 19, No. 5, 650-656, 2004.

9. Schenck, J. F., "The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds," Med. Phys., Vol. 23, No. 6, 815-850, 1996.

10. Haacke, E. M., L. S. Petropoulos, E. W. Nilges, and D. H. Wu, "Extraction of conductivity and permittivity using magnetic resonance imaging," Phys. Med. Biol., Vol. 36, No. 6, 723-734, 1991.

11. Wen, H., "Noninvasive quantitative mapping of conductivity and dielectric distributions using RF wave propagation effects in high-field MRI," Proc. SPIE Med. Imag., Vol. 5030, 471-477, San Diego, CA, USA, 2003.

12. Katscher, U., T. Voigt, C. Findeklee, P. Vernickel, K. Nehrke, and O. Dössel, "Determination of electric conductivity and local SAR via B1 mapping," IEEE Trans. Med. Imag., Vol. 28, No. 9, 1365-1374, 2009.

13. Voigt, T., U. Katscher, and O. Doessel, "Quantitative conductivity and permittivity imaging of the human brain using electric properties tomography," Magn. Reson. Med., Vol. 66, No. 2, 456-466, 2011.

14. Seo, J. K., M.-O. Kim, J. Lee, N. Choi, E. J. Woo, H. J. Kim, O. I. Kwon, and D.-H. Kim, "Error analysis of nonconstant admittivity for MR-based electric property imaging," IEEE Trans. Med. Imag., Vol. 31, No. 2, 430-437, 2012.

15. Duan, S., C. Xu, G. Deng, J. Wang, F. Liu, and S. X. Xin, "Quantitative analysis of the reconstruction errors of the currently popular algorithm of magnetic resonance electrical property tomography at the interfaces of adjacent tissues," NMR Biomed., Vol. 29, No. 6, 744-750, 2016.

16. Song, Y. and J. K. Seo, "Conductivity and permittivity image reconstruction at the larmor frequency using MRI," SIAM J. Appl. Math., Vol. 73, No. 6, 2262-2280, 2013.

17. Ammari, H., H. Kwon, Y. Lee, K. Kang, and J. K. Seo, "Magnetic-resonance-based reconstruction method of conductivity and permittivity distribution at Larmor frequency," Inverse Problems, Vol. 31, No. 10, 105001, 2015.

18. Hafalir, F. S., O. F. Oran, N. Gurler, and Y. Z. Ider, "Convection-reaction equation based magnetic resonance electrical properties tomography (cr-MREPT)," IEEE Trans. Med. Imag., Vol. 33, No. 3, 777-793, 2014.

19. Sodickson, D. K., L. Alon, C. M. Deniz, R. Brown, B. Zhang, G. C. Wiggins, G. Y. Cho, N. B. Eliezer, D. S. Novikov, R. Lattanzi, Q. Duan, L. A. Sodickson, and Y. Zhu, "Local Maxwell tomography using transmit-receive coil arrays for contact-free mapping of tissue electrical properties and determination of absolute RF phase," Proc. ISMRM 20th Annual Meeting, 387, Melbourne, VIC, Australia, 2012.

20. Sodickson, D. K., L. Alon, C. M. Deniz, N. B. Eliezer, L. A. Sodickson, C.M. Collins, G. C. Wiggins, and D. S. Novikov, "Generalized local Maxwell tomography for mapping of electrical property gradients and tensors," Proc. ISMRM 21st Annual Meeting, 4175, Salt Lake City, UT, USA, 2013.

21. Liu, J., X. Zhang, P.-F. V. de Moortele, S. Schmitter, and B. He, "Determining electrical properties based on B1 fields measured in an MR scanner using a multi-channel transmit/receive coil: A general approach," Phys. Med. Biol., Vol. 58, No. 7, 4395-4408, 2013.

22. Zhang, X., S. Schmitter, P.-F. V. de Moortele, J. liu, and B. He, "From complex B1 mapping and to local SAR estimation for human brain MR imaging using multi-channel transceiver coil at 7 T," IEEE Trans. Med. Imag., Vol. 32, No. 6, 1058-1067, 2013.

23. Liu, J., X. Zhang, S. Schmitter, P.-F. V. de Moortele, and B. He, "Gradient-based electrical properties tomography (gEPT): A robust method for mapping electrical properties of biological tissues in vivo using magnetic resonance imaging," Magn. Reson. Med., Vol. 74, No. 3, 634-646, 2015.

24. Liu, J., P.-F. V. de Moortele, X. Zhang, Y. Wang, and B. He, "Simultaneous quantitative imaging of electrical properties and proton density from B1 maps using MRI," IEEE Trans. Med. Imag., Vol. 35, No. 9, 2064-2073, 2016.

25. Balidemaj, E., C. A. van den Berg, J. Trinks, A. L. van Lier, A. J. Nederveen, L. J. A. Stalpers, H. Crezee, and R. F. Remis, "CSI-EPT: A contrast source inversion approach for improved MRI based electric properties tomography," IEEE Trans. Med. Imag., Vol. 34, No. 9, 1788-1796, 2015.

26. Arduino, A., L. Zilberti, M. Chiampi, and O. Bottauscio, "CSI-EPT in presence of RF-shield for MR-coils," IEEE Trans. Med. Imag., Vol. 36, No. 7, 1396-1404, 2017.

27. Nara, T., T. Furuichi, and M. Fushimi, "An explicit reconstruction method for magnetic resonance electrical property tomography base on the generalized Cauchy formula," Inverse Problems, Vol. 33, No. 10, 105005, 2017.

28. Fushimi, M. and T. Nara, "A boundary-value-free reconstruction method for magnetic resonance electrical properties tomography based on the neumann-type integral formula over a circular region," SICE JCMSI, Vol. 10, No. 6, 571-578, 2017.

29. Ablowitz, M. and A. Fokas, Complex Variables: Introduction and Applications, 2nd Edition, Cambridge University Press, 2003.

30. Gurler, N. and Y. Z. Ider, "Numerical methods and software tools for simulation, design, and resonant mode analysis of radio frequency birdcage coils used in MRI," Concepts Magn. Reson. Part B, Vol. 45B, No. 1, 13-32, 2015.

31. Insko, E. K. and L. Bolinger, "Mapping of the radiofrequency field," J. Magn. Reson., Vol. 103, No. 1, 82-85, 1993.

32. Van Lier, A. L., J. M. Hoogduin, D. L. Polders, V. O. Boer, J. Hendrikse, P. A. Robe, P. A. Woerdeman, J. J. Lagendijk, P. R. Luijten, and C. A. van den Berg, "Electrical conductivity imaging of brain tumours," Proc. ISMRM 19th Annual Meeting, 4464, Montréal, QC, Canada, 2011.

33. Vico, F., L. Greengard, and M. Ferrando, "Fast convolution with free-space Green’s functions," J. Comput. Phys., Vol. 323, 191-203, 2016.