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Three-Dimensional Magnetic Resonance Electrical Properties
Tomography Based on Linear Integral Equation Derived

from the Generalized Cauchy Formula

Motofumi Fushimi* and Takaaki Nara

Abstract—Magnetic resonance electrical properties tomography has attracted attentions as an imaging
modality for reconstructing the electrical properties (EPs), namely conductivity and permittivity, of
biological tissues. Current reconstruction algorithms assume that EPs are locally homogeneous, which
results in the so-called tissue transition-region artifact. We previously proposed a reconstruction
algorithm based on a Dbar equation that governed electric fields. The representation formula of
its solution was given by the generalized Cauchy formula. Although this method gives an explicit
reconstruction formula of EPs when two-dimensional approximation holds, an iterative procedure is
required to deal with three-dimensional problems, and the convergence of this method is not guaranteed.
In this paper, we extend our previous method to derive an explicit reconstruction formula of EPs that is
effective even when the magnetic field and EPs vary along the body axis. The proposed method solves
a linear system of equation derived from the generalized Cauchy formula using the conjugate gradient
method with fast Fourier transform algorithm instead of directly performing a forward calculation, as
was done in our previous method. Numerical simulations with cylinder and human-head models and
phantom experiments show that the proposed method can reconstruct EPs precisely without iteration
even in the three-dimensional case.

1. INTRODUCTION

Magnetic-resonance-based electrical properties tomography (EPT) is an emerging modality that
noninvasively reconstructs the electrical properties (EPs), namely electric conductivity and dielectric
permittivity, of biological tissues from the measured radiofrequency (RF) magnetic field obtained using
a magnetic resonance imaging (MRI) scanner [1–4]. The retrieved EP maps reflect the physiological
and pathological states of tissues and thus provide valuable information for clinical diagnoses. Several
studies have shown that cancerous tissues have significantly different EP values compared with those of
healthy tissues [5–7]. An increase in conductivity has been reported for hemorrhagic and ischemic stroke
lesions [5]. Furthermore, conductivity maps can be used to calculate a patient-wise specific absorption
rate (SAR) distribution [8], which is a safety criterion for preventing tissue heating in recent high-field
MRI systems.

The electromagnetic fields transmitted by RF coils are governed by the following time-harmonic
Maxwell’s equations:

∇× E(r) = −iωμ0H(r), (1)

∇× H(r) = iω
(

εr(r)ε0 − i
σ(r)
ω

)
E(r) = iωκ(r)E(r), (2)
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where r ∈ Ω and Ω represents the body. Note that Ω does not include the electric source on an MRI coil.
μ0 and ε0 are the magnetic permeability and the dielectric permittivity of free space, respectively, and
ω/2π is the Larmor frequency of proton nuclei. We defined the complex permittivity, κ, as εrε0 − iσ/ω.
The magnetic permeability is assumed to be constant and identical to μ0 throughout the entire body
because the magnetic susceptibility of the human body is sufficiently small [9]. By using receiver coils,
the positively rotating component of the magnetic field, H+ ≡ (Hx + iHy)/2, where the z-axis is set
parallel to the body axis, can be measured inside Ω. Therefore, the EPT problem is to reconstruct κ
inside the region of interest (ROI) denoted by D ⊂ Ω from the measured H+ data.

A simple approach for the EPT inverse problem is to derive Helmholtz’s equation for H+ by
neglecting the spatial variation of κ [10, 11]. Although this approach realizes a simple pointwise
reconstruction of κ, unstable results are obtained because this method requires second-order derivatives
of the measured magnetic field data, which amplify the high-frequency measurement noise. Some
stabilized versions of this method have been proposed [12, 13]. However, a limitation of this method is
that serious errors occur at tissue transition-regions where EPs vary [14, 15].

Methods for removing the artifact at the tissue transition-region artifacts can be generally divided
into two types. The first approach is based on local relations represented by partial differential equations
(PDEs). Song et al. [16] and Ammari et al. [17] proposed iterative methods that solve the nonlinear
PDE for κ expressed by the measured H+ data for cases where EPs are two- and three-dimensionally
distributed, respectively. Hafalir et al. proposed the cr-MREPT method [18]. They introduced the
inverse of admittivity, λ ≡ 1/iωκ, and derived a linear PDE for λ. They solved the linear PDE using
the finite element method (FEM). The main disadvantage of these PDE-based local methods is that
the Laplacian of the measured data must be calculated, which amplifies noise. Some authors proposed
solving a system of equations for both κ and ∇κ by utilizing multiple sets of magnetic field data obtained
using a multichannel coil [19–24]. Here, we assume quadrature birdcage coil (QBC) configurations, which
are in common use.

The second approach is based on global relations represented by integral equations (IEs). Balidemaj
et al. proposed the CSI-EPT method [25], which is based on the scattering problem formulation. The
IE is solved using an optimization procedure called the contrast source inversion method. However, as
pointed out by Arduino et al. [26], the IE representation includes Green’s function, which is associated
with the governing PDE and specific boundary conditions. The explicit representation of this Green’s
function can be obtained only when the specific simple boundary conditions or radiation conditions are
given. Thus, to deal with the more complicated case of using an RF shield, which is mathematically
modeled as a perfect electric conductor shield, one must calculate Green’s function numerically by
solving a FEM problem at each iteration.

We previously proposed a Dbar-equation-based reconstruction method [27, 28]. In this method,
with the two-dimensional (2D) plane approximation, Hz = 0 and ∂zH

+ = 0, the following complex
form of Maxwell’s equations were derived:

∂̄Ez(ζ) = ωμ0H
+(ζ), (3)

4∂H+(ζ) = −ωκ(ζ)Ez(ζ). (4)

where ζ = x + iy, ζ ∈ D and D is the 2D ROI. We defined complex differential operators, ∂ and ∂̄, as
follows:

∂ ≡ 1
2
(∂x − i∂y), (5)

∂̄ ≡ 1
2
(∂x + i∂y). (6)

In this method, we split the whole reconstruction procedure of calculating κ from H+ into two parts:
the Ez reconstruction part and the κ reconstruction part. In the first part, we solve Eq. (3) for Ez.
This type of PDE is known as the Dbar equation. The explicit representation of the solution is given
by the generalized Cauchy formula [29]. Once we obtain Ez, κ is directly reconstructed as the ratio of
∂H+ to Ez from Ampere’s law given in Eq. (4). Because this method does not need to calculate the
second derivative of H+, it is more robust against noise. This representation formula holds for an ROI,
D, with any boundary shape.
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However, this method is restricted to the 2D case when κ is homogeneous in the axial direction.
Therefore, in this paper, we extend our previous method and propose a reconstruction method that can
be applied to the general three-dimensional problem.

2. THEORY

2.1. Governing Equation of Electric Field

In this section, we derive the governing equation of Ez that accounts for the variation of EPs along the
axial direction. By taking the (x + iy)-component of Eq. (1), it follows that

∂̄Ez = ωμ0H
+ + ∂zE

+, (7)

where E+ ≡ (Ex + iEy)/2. In our previous method, we neglected the E+ term in Eq. (7), resulting in
Eq. (3). By taking the (x + iy)-component of Eq. (2), it follows that E+ is related to the z-derivative
of H+ and κ as follows:

E+ =
∂zH

+

ωκ
(8)

Therefore, neglecting E+ is equivalent to assuming ∂zH
+ = 0. By substituting Eq. (8) into Eq. (7), we

get

∂̄Ez = ωμ0H
+ + ∂z

(
∂zH

+

ωκ

)
. (9)

To properly evaluate E+ and derive a PDE of Ez in terms of the measured H+ and its derivatives
including ∂zH

+, we first eliminate κ in Eq. (9). Eq. (4) says that the EPs are calculated as the ratio of
the magnetic field gradient to the electric field as follows:

1
κ

= − ωEz

4∂H+
, (10)

when ∂H+ �= 0 holds. Substituting Eq. (10) into Eq. (9) yields

∂̄Ez = ωμ0H
+ − ∂z

(
∂zH

+

4∂H+
Ez

)
. (11)

This is a complex PDE for Ez that accounts for the effect of ∂zH
+. If ∂zH

+ is assumed to be zero,
Eq. (11) reduces to Eq. (3) used in our previous method.

To deal with the case when ∂H+ � 0, we estimate 1/κ by minimizing the following cost functional:

J

(
1
κ

)
=
∣∣∣∣ω4 Ez + ∂H+ 1

κ

∣∣∣∣
2

+ α2

∣∣∣∣ 1κ
∣∣∣∣
2

. (12)

This corresponds to estimating 1/κ with Tikhonov regularization. The estimate can be calculated in a
pointwise manner as follows:

1
κ

= −ω

4
∂H+

|∂H+|2 + α2
Ez, (13)

where α > 0 is a regularization parameter. Substituting Eq. (13) into Eq. (7) and (8) yields

∂̄Ez = ωμ0H
+ − ∂z

(
∂zH

+

4
∂H+

|∂H+|2 + α2
Ez

)
. (14)

Eq. (14) is our fundamental equation that describes Ez in terms of the measured H+ and its derivatives.
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2.2. Linear Integral Equation for Ez and Its Solution

In this section, we derive a linear integral equation for Ez from Eq. (14). Given a simply connected 2D
domain D bounded by a simple closed contour C ≡ ∂D and a function f ∈ C(D)∩C1(D) with ∂̄f = g,
the following formula holds [29]:

f(ζ) =
1

2πi

∫
C

f(ζ ′)
ζ ′ − ζ

dζ ′ − 1
π

∫∫
D

g(ζ ′)
ζ ′ − ζ

dx′dy′, (15)

where ζ = x + iy and ζ ′ = x′ + iy′. Eq. (15) is called the generalized Cauchy formula and gives an
explicit representation of the solution of a Dbar equation, ∂̄f = g. Substituting Eqs. (4) and (14) into
Eq. (15) leads to

Ez(ζ) =
1

2πi

∫
C

−4∂H+/(ωκ)
ζ ′ − ζ

dζ ′ − 1
π

∫∫
D

ωμ0H
+ − ∂z(AEz)
ζ ′ − ζ

dx′dy′, (16)

where, for simplicity, we define A as follows:

A ≡ ∂zH
+

4
∂H+

|∂H+|2 + α2
. (17)

Eq. (16) includes Ez in its integral term and thus is an integral equation for Ez. By defining an operator,
T , as

T [f ](ζ) ≡ − 1
π

∫∫
D

f

ζ ′ − ζ
dx′dy′, (18)

and L[f ] as −T [∂z(Af)], Eq. (16) can be rewritten as follows:

(I − L)[Ez ] = E0
z , (19)

where I is the identity operator and

E0
z ≡ 1

2πi

∫
C

−4∂H+/(ωκ)
ζ ′ − ζ

dζ ′ − 1
π

∫∫
D

ωμ0H
+

ζ ′ − ζ
dx′dy′. (20)

This linear integral equation can be solved using the conjugate gradient (CG) method. In the CG
method, the forward operation must be calculated for each iteration. In our case, the operator T is
defined as a convolution and thus can be efficiently calculated using the fast Fourier transform (FFT).
Note that the convolution is done in a finite domain, D, instead of the whole complex plane. Therefore
some modification of the convolution kernel is needed to properly calculate the integration via FFT.
The details are described in Appendix A.

Once we obtain the estimation of Ez, κ is directly calculated as the ratio of ∂H+ to Ez according
to Eq. (4).

2.3. Comparison with Iterative Correction Method

In this section, we compare the proposed method with our previous method that uses the 2D assumption
to obtain the initial estimate, which is given by E0

z in Eq. (20), and iteratively correct the effect of ∂zH
+.

With the current estimate of the electric field, E
(n)
z , the updated estimate, E

(n+1)
z is obtained by

substituting E
(n)
z into the right hand side of Eq. (16) and performing the forward integral calculation.

By using the operator, L, this update procedure can be written as follows:

E(n+1)
z = E0

z + L[E(n)
z ]. (21)

Eq. (19) can be rewritten as follows using the Neumann expansion of L:

Ez = E0
z + L[E0

z ] + L[L[E0
z ]] + . . . (22)

A comparison of Eq. (22) with Eq. (21) indicates that the n-th estimate of the iteration method
corresponds to the solution of Eq. (16) when (I − L)−1[Ez] is approximated as the first n terms of
Eq. (22).
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Note that the Neumann expansion of (I − L)−1 is valid only when ‖L‖ < 1 holds, where ‖L‖
represents the operator norm of L. In our case, L[f ] = −T [∂z(Af)] with A given by Eq. (17). Therefore,
the norm of L depends on ∂zH

+ and ∂H+. It is known that when the birdcage coil typically used in
modern MR scanners is driven in quadrature mode, ∂H+ gets very small around the center of the
human body. Thus, if we include the center of the body in the ROI, ‖L‖ < 1 does not hold, resulting
in a non-converged case of the iteration method. Our proposed method, in contrast, is free from such
non-convergent results because it does not use the Neumann expansion.

3. METHODS

3.1. Numerical Simulations

A 16-leg high-pass shielded birdcage coil with a diameter of 240 mm and a height of 270 mm was
constructed. A cylindrical phantom with a diameter of 144 mm and a height of 270 mm was loaded into
the birdcage coil. The optimal capacitance value of the birdcage coil was determined according to the
method proposed by Gurler et al. [30]. The magnetic field was excited at 123.2 MHz (corresponding to
a 2.89 T MRI system) in quadrature excitation mode, in which the coil was driven by two ports 90◦
apart from each other and with a 90◦ phase difference. H+ was obtained on a 180 mm × 180 mm square
region centered at the origin in the central slice (z = 0) with a matrix size of 128 × 128 (a resolution
of about 1.4 mm × 1.4 mm). Two models (model 1 in Fig. 1(a), which we call the Shepp-Logan model,
and model 2 in Fig. 1(b), which we call the human brain model) were constructed as loading objects.
True EP maps of each model in the ROI are shown in Fig. 2.

(a) Shepp-Logan model (b) Human brain model

Figure 1. Simulation setups for (a) Shepp-Logan model and (b) human brain model.

The computation of H+ was performed using the FEM software, COMSOL Multiphysics 5.3
(COMSOL Inc.). MATLAB R2019a (The MathWorks Inc.) was used for all reconstruction processes.

3.2. Phantom Experiments

A phantom composed of two cylindrical regions (inner and outer regions) was used. The conductivity
of the phantom was modified by adding NaCl. The permittivity was constant and identical to that of
water. We added 6 and 2 g/l of NaCl in regions 1 and 2, respectively. The conductivities of the inner
and outer regions were 0.94 and 0.43 S/m, as measured using a conductivity meter (Hanna Instruments,
HI 8733). We used CuSO4 (1.5 g/l) to adjust the T1 value of the phantom.
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(a) Conductivity
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(b) Relative permittivity

Figure 2. True EP maps of two simulation models: Shepp-Logan model (top) and human brain model
(bottom). (a) Condyctivity and (b) relative permittivity.

The magnitude of H+ can be measured using the B1 mapping technique. We used the double angle
method proposed in [31]. In this method, |H+| is calculated from two gradient echo images with 60◦
and 120◦ flip angles, respectively, as follows:

|H+| =
cos−1 (|SGRE,120|/2|SGRE,60|)

μ0γτ
, (23)

where γ is the gyromagnetic ratio, and τ is the duration time of the RF pulse. The phase of H+ is
calculated from two spin echo images with opposite readout directions as follows:

∠H+ =
(∠SSE,AP + ∠SSE,PA)/2

2
. (24)

Note that we used the transceive phase approximation [32] to separate transmit phase ∠H+ from receive
phase ∠H−.

The experiment was conducted using the 3T MR scanner Magnetom Prisma (Siemens) at the
University of Tokyo.

4. RESULTS

4.1. Simulation Results

Figure 3 shows the reconstruction results for the Shepp-Logan model when 1% Gaussian noise was
added. As shown in Fig. 3(a), in the previous method with no iteration, both conductivity and relative
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(a) Previous method with no iteration
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(b) Previous method with five iterations
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(c) Proposed method

Figure 3. Reconstruction results of conductivity (top) and relative permittivity (bottom) for Shepp-
Logan model for a signal-to-noise ration of 40 dB. (a) Previous method with no iteration, (b) previous
method with five iterations, and (c) proposed method.

permittivity have lower values than those in the true maps. This is because the z derivative of the
magnetic field is ignored in the previous method with no iteration. The effect of ∂zH

+ is properly
corrected for in the previous method after five iterations, as shown in Fig. 3(b). The proposed method
also accurately estimated the conductivity and relative permittivity maps without iteration, as shown
in Fig. 3(c).

Figure 4 shows relative errors after each iteration measured using the L2 norm expressed as√√√√ 1
N

N∑
i=1

|κ(ζi) − κtrue(ζi)|
|κtrue(ζi)| , (25)

where i is the index of points in the ROI, and N is the number of pixels in the ROI. As shown in Fig. 4,
both conductivity and relative permittivity converged after a single iteration. The relative errors of the
proposed method have lower values than those of the previous method after five iterations.

Figure 5 plots the reconstruction results on the line x = 0. The values for the proposed method
(red line) are closer to the true values (black line) than are those for the previous method (blue line).

Figure 6 shows the reconstruction results for the human brain model when no noise was added.
As shown in Fig. 6(a), both conductivity and relative permittivity have lower values than those in
the true maps. This brain model has EPs varying along the z-axis and thus the effect of ∂zH

+ is
more prominent here than in the Shepp-Logan model. The results of the previous method after five
iterations have serious errors as shown in Fig. 6(b). This is because the zero-point artifact is severe in
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Figure 4. Relative errors of (a) conductivity and (b) relative permittivity at each iteration of the
previous method and for the proposed method. ∞ on the horizontal axis indicates the result for the
proposed method.
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(b) Relative permittivity

Figure 5. Line plot at y = 0mm when no noise was added.

this model and convergence is not guaranteed in this case. The proposed method correctly incorporates
the effect of ∂zH

+ and gives relatively stable results, as shown in Fig. 6(c). This is confirmed in Fig. 7.
The relative errors of the previous method do not decrease with increasing number of iterations. The
proposed method yields the lowest errors in both conductivity and relative permittivity results.

The difference between the results of the two models is explained below. For the Shepp-Logan
model, the iterative correction properly worked and only a single iteration was needed to obtain
converged results. This is because the zero-point artifact is not severe in the Shepp-Logan model
and thus the condition ‖L‖ < 1 may be satisfied when sufficient regularization is applied to calculate
the inverse of ∂H+. For the human brain model, in contrast, the iteration did not converge. This is
because the zero-point artifact is severe in this model and the condition ‖L‖ < 1 may not be satisfied
even when the inversion of ∂H+ is regularized.

4.2. Experimental Results

Figure 8 shows the reconstructed conductivities of the experimental phantom. The result of the standard
EPT method is also shown in Fig. 8(a) because standard EPT is free from 2D approximation and,
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(a) Previous method with no iteration
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(b) Previous method with five iterations 
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(c) Proposed method

Figure 6. Reconstruction results of conductivity (top) and relative permittivity (bottom) for human
brain model for a signal-to-noise ration of 40 dB. (a) Previous method with no iteration, (b) previous
method with five iterations, and (c) proposed method.

with sufficient smoothing filtering, it yields accurate results except at tissue-transition regions. The
conductivity values obtained using the previous method are lower than those of the standard method,
whereas those of the proposed method are very close in both the inner and outer cylindrical regions.
These values also match those measured using an electric probe.
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Figure 7. Relative errors at each iteration of the previous method and for the proposed method.
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(b) Previous method with no iteration
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(c) Proposed method

Figure 8. Reconstruction results of conductivity (top) and relative permittivity (bottom) for the
phantom experiment. (a) Standard method, (b) previous method with no iteration, and (c) proposed
method.

5. CONCLUSION

In this paper, we extended our previous method to derive an explicit reconstruction formula of EPs that
is effective even when the magnetic field and EPs vary along the body axis. The proposed method solves
a linear integral equation derived from the generalized Cauchy formula using the CG method with the
FFT algorithm instead of directly performing a forward calculation as was done in our previous method.
Numerical simulations with cylinder and human-head models and phantom experiments show that the
proposed method can reconstruct EPs precisely without iteration even in the three-dimensional case.
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APPENDIX A. DERIVATION OF CAUCHY KERNEL FOR A FINITE-DOMAIN
INTEGRAL

By extending the integrand f with zero-padding, the operation T [f ] can be regarded as a convolution
of f with the Cauchy kernel as follows:

T [f ](ζ) =
1
π

∫∫
R2

f̃(ζ ′)
ζ − ζ ′

dx′dy′ = f̃(ζ) ∗ 1
πζ

, (A1)

where

f̃(ζ) =
{

f(ζ) ζ ∈ D,

0 ζ ∈ R
2 \ D

(A2)

To realize this convolution as a pointwise product in the Fourier domain, we derive the Fourier-domain
representation of G(x, y) = 1/(π(x + iy)). Given that G(x, y) is a fundamental solution of the Dbar
equation, it holds that

1
2
(∂x + i∂y)G(x, y) = δ(x)δ(y). (A3)

Applying the Fourier transform to both sides of Eq. (A3) yields

F [G] =
1
πi

1
u + iv

. (A4)

Note that this function is singular at the origin. Following to Vico [33], we modify the function to derive
a non-singular version without any approximation.
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Because f̃ has a finite support, D, by its definition and thus the range that the convolution has
nonzero value is bounded, it holds that

I(ζ) = f̃(ζ) ∗ χR(ζ)
πζ

(A5)

without any approximation, where χR is the characteristic function of the region R. R can be taken
as a circle with radius a, where a is determined according to D. In this case, χR = U(a − r) holds,
where U is the step function and r =

√
x2 + y2. Then, the Dbar derivative of χRG can be calculated

as follows:
1
2
(∂x + i∂y)

(
χR(x, y)G(x, y)

)
= U(a − r)δ(x)δ(y) − exp(iθ)δ(r − a)

2
1
πζ

= δ(x)δ(y) − δ(r − a)
2πr

, (A6)

where θ = tan−1(y/x). Compared to Eq. (A3), Eq. (A6) has an additional term, namely the delta
function at r = a, reflecting the effect of U(a − r). The Fourier spectrum of the second term on the
right-hand side is given as follows:

F
[
−δ(r − a)

2πr

]
= − 1

2π

∫∫
R2

δ(r − a)
r

exp
(−2πi(ux + vy)

)
dxdy

= −J0(2πaρ), (A7)

where ρ =
√

u2 + v2 and J0 is the zeroth-order Bessel function of the first kind. By applying the Fourier
transform to Eq. (A6) and substituting Eq. (A7), it holds that

F
[

χR(x, y)
π(x + iy)

]
=

1
πi

1 − J0(2πaρ)
u + iv

. (A8)

This function can be used to calculate the convolution with the Cauchy kernel in a finite domain and
is not singular at the origin.
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