Vol. 102
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-06-10
A Computationally Efficient Modified MUSIC Spectrum for Resolving DOAs of Multiple Closely Spaced Non-Gaussian Sources
By
Progress In Electromagnetics Research C, Vol. 102, 241-251, 2020
Abstract
The objective of this work is to estimate the Direction of Arrival (DOA) of signals from multiple closely spaced non-Gaussian sources corrupted by additive Gaussian noise. Generally, this is achieved by using higher order statistics (HoS) based MUSIC spectrum. In HoS, the Fourth order Cumulant is utilized because of its property of insensitivity to Gaussian process. But in the case of resolving closely spaced sources, a large number of sensor elements are required; otherwise, the resolution gets deteriorated. The large number of sensor elements leads to high computational burden. We propose a computationally efficient modified Spectrum that combines Fourth order Cumulants based MUSIC spectrum and its second-order differential counterparts. The proposed spectrum for DOA estimation offers good statistical performance and better accuracy the existing methods even in the case of extremely closely spaced signal sources. The improvement in the aspects of resolution and accuracy is substantiated by means of various simulation results such as Monte-Carlo simulations, spectral width, resolution with respect to angular separation, and comparison of RMSE with respect to number of array elements, number of snapshots, and SNR. The computational complexity analysis of the proposed method is also presented.
Citation
Chandrasekaran Ashok, and Venkateswaran Narasimhan, "A Computationally Efficient Modified MUSIC Spectrum for Resolving DOAs of Multiple Closely Spaced Non-Gaussian Sources," Progress In Electromagnetics Research C, Vol. 102, 241-251, 2020.
doi:10.2528/PIERC20020603
References

1. Shu, F., et al. "Directional modulation: A physical-layer security solution to B5G and future wireless networks," IEEE Network, Vol. 34, No. 2, 210-216, Mar./Apr. 2020.
doi:10.1109/MNET.001.1900258

2. Mohammad Razavizadeh, S., M. Ahn, and I. Lee, "Three-dimensional beamforming: A new enabling technology for 5G wireless networks," IEEE Signal Process. Mag., Vol. 31, No. 6, 94-101, Nov. 2014.
doi:10.1109/MSP.2014.2335236

3. 3GPP "Report of 3GPP RAN Workshop on Release 12 and onwards,", RWS-120052, 3GPP Workshop on Release 12 Onward, Jun. 2012.

4. Foutz, J., A. Spanias, and M. K. Banavar, "Narrowband direction of arrival estimation of antenna arrays, Synthesis lectures on antennas#8," Synthesis Lectures on Antennas, Morgan and Claypool Publishers, San Rafael, CA, 2008.

5. Evers, C., E. A. P. Habets, S. Gannot, and P. A. Naylor, "DOA reliability for distributed acoustic tracking," IEEE Signal Processing Letters, Vol. 25, No. 9, 1320-1324, Sept. 2018.
doi:10.1109/LSP.2018.2849579

6. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propag., Vol. 34, 276-280, Mar. 1986.
doi:10.1109/TAP.1986.1143830

7. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 37, 984-995, Jul. 1989.

8. Capon, J., "High resolution frequency-wavenumber spectral analysis," Proc. IEEE, Vol. 57, No. 8, 1408-1418, 1969.
doi:10.1109/PROC.1969.7278

9. Ziskind, I. and M. Wax, "Maximum likelihood localization of multiple sources by alternating projection," IEEE Trans. Acous., Speech and Signal Processing, Vol. 36, No. 10, 1553-1560, 1988.
doi:10.1109/29.7543

10. Krim, H. and M. Viberg, "Two decades of array signal processing research," IEEE Signal Process. Mag., Vol. 13, No. 7, 67-94, Jul. 1996.

11. Zhang, Y., G. Zhang, and H. Leung, "Grid-less coherent DOA estimation based on fourth-order cumulants with Gaussian coloured noise," IET Radar, Sonar & Navigation, Vol. 14, No. 5, 677-685, 2020.
doi:10.1049/iet-rsn.2019.0329

12. Chen, G., X. Zeng, S. Jiao, A. Yu, and Q. Luo, "High accuracy near-field localization algorithm at low SNR using fourth-order cumulant," IEEE Communications Letters, Vol. 24, No. 3, 553-557, Mar. 2020.
doi:10.1109/LCOMM.2019.2959576

13. Porat, B. and B. Friedlander, "Direction finding algorithms based on higher order statistics," IEEE Transactions on Signal Processing, Vol. 39, No. 9, 2016-2024, Sept. 1991.
doi:10.1109/78.134434

14. Liao, B. and S.-C. Chan, "A cumulant-based method for direction finding in uniform linear arrays with mutual coupling ," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1717-1720, 2014.
doi:10.1109/LAWP.2014.2352939

15. Dougan, M. C. and J. M. Mendel, "Applications of cumulants to array processing Part II: Non-Gaussian noise suppression," IEEE Transactions on Signal Processing, Vol. 43, No. 7, 1663-1676, 1995.
doi:10.1109/78.398727

16. Palanisamy, P. and N. Rao, "Direction of arrival estimation based on fourth-order cumulant using propagator method," Progress In Electromagnetics Research B, Vol. 18, 83-99, 2009.
doi:10.2528/PIERB09081806

17. Ebrahimi, A. A., H. R. Abutalebi, and M. Karimi, "Generalised two stage cumulants-based MUSIC algorithm for passive mixed sources localisation," IET Signal Processing, Vol. 13, No. 4, 409-414, 2019.
doi:10.1049/iet-spr.2018.5357

18. Kumar, L., A. Tripathy, and R. M. Hegde, "Robust multi-source localization over planar arrays using music-group delay spectrum," IEEE Transactions on Signal Processing, Vol. 62, No. 17, 4627-4636, Sept. 2014.
doi:10.1109/TSP.2014.2337271

19. Ichige, K., Y. Ishikawa, and H. Arai, "Accurate direction-of-arrival estimation using second-order differential of music spectrum," Proc. IEEE Int. Symp. Intell. Signal Process. Commun. (ISPACS), 995-998, 2006.

20. Ichige, K., K. Saito, and H. Arai, "High resolution DOA estimation using unwrapped phase information of music-based noise subspace," IEICE Trans. Fundam. Electron. Commun. Comput. Sci., Vol. E91-A, 1990-1999, Aug. 2008.
doi:10.1093/ietfec/e91-a.8.1990

21. Ahmed, T., X. Zhang, and W. U. Hassan, "A higher-order propagator method for 2D-DOA estimation in massive MIMO systems," IEEE Communications Letters, Vol. 24, No. 3, 543-547, Mar. 2020.
doi:10.1109/LCOMM.2019.2960341