Vol. 100
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-03-14
Upper WLAN Band Notched UWB Monopole Antenna Using Compact Two via Slot Electromagnetic Band Gap Structure
By
Progress In Electromagnetics Research C, Vol. 100, 161-171, 2020
Abstract
Electromagnetic Band Gap (EBG) structures can be employed near the feed line of a UWB monopole antenna, to reject the already existing narrowband radio signals operating within the spectrum of an Ultra Wide Band (UWB) antenna. Multiple EBG structures are required to reject multiple interfering bands. However, since the ground plane of a monopole antenna is limited, there is a need for compact EBG structures. This paper presents the application of a Two Via Slot (TVS) EBG to reject the interfering upper Wireless Local Area (WLAN) band (5.725 GHz-5.825 GHz) from the spectrum of a fork-shaped UWB monopole antenna. The simulated results demonstrate that the TVS EBG gives better performance in terms of higher and sharper Voltage Standing Wave Ratio (VSWR) value at the rejection band while occupying least ground plane area than Conventional Mushroom Type (CMT) EBG, Edge Located Via (ELV) EBG, slotted-patch ELV EBG, and semi-circular EBG. The proposed design is fabricated and measured. The measurement results prove that the antenna successfully achieves wide impedance bandwidth from 3 GHz to 12 GHz while rejecting the frequencies from 5.4 GHz to 5.9 GHz.
Citation
Priyanka Dalal, and Sanjeev Kumar Dhull, "Upper WLAN Band Notched UWB Monopole Antenna Using Compact Two via Slot Electromagnetic Band Gap Structure," Progress In Electromagnetics Research C, Vol. 100, 161-171, 2020.
doi:10.2528/PIERC20012101
References

1. Federal Communications Commission (FCC), Washington DC, "First report and order in the matter of revision of Part 15 of the commission’s rules regarding ultra-wideband transmission systems,", ET-Docket 98-153, 2002.
doi:10.1049/el:20057244

2. Huang, C. Y. and W. C. Hsia, "Planar elliptical antenna for ultra-wideband communications," Electron. Lett., Vol. 41, No. 6, 296-297, Mar. 2005.
doi:10.1109/TAP.2007.912946

3. Abbosh, A. M. and M. E. Bialkowski, "Design of ultrawideband planar monopole antennas of circular and elliptical shape," IEEE Trans. Antennas Propag., Vol. 56, No. 1, 17-23, Jan. 2008.
doi:10.1049/iet-map.2008.0236

4. Ojaroudi, M., G. Kohneshahri, and J. Noory, "Small modified monopole antenna for UWB application," IET Microw. Antennas Propag., Vol. 3, No. 5, 863-869, Aug. 2009.
doi:10.1049/iet-map.2008.0201

5. Ray, K. P. and S. Tiwari, "Ultra wideband printed hexagonal monopole antennas," IET Microw. Antennas Propag., Vol. 4, No. 4, 437-445, Apr. 2010.
doi:10.1109/LAWP.2012.2192900

6. Nguyen, D. T., D. H. Lee, and H. C. Park, "Very compact printed triple band-notched UWB antenna with quarter-wavelength slots," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 411-414, 2012.
doi:10.1109/TAP.2018.2803134

7. Chandel, R., A. K. Gautam, and K. Rambabu, "Tapered fed compact UWB MIMO-diversity antenna with dual band-notched characteristics," IEEE Trans. Antennas Propag., Vol. 66, No. 4, 1677-1684, Apr. 2018.
doi:10.1049/iet-map.2018.0012

8. Gautam, A. K., S. Yadav, and K. Rambabu, "Design of ultra-compact UWB antenna with band-notched characteristics for MIMO applications," IET Microw. Antennas Propag., Vol. 12, No. 12, 1895-1900, Sep. 2018.
doi:10.1002/mop.31535

9. Hammache, B., A. Messai, I. Messaoudene, and T. A. Denidni, "A compact ultra-wideband antenna with three C-shaped slots for notched band characteristics," Microw. Opt. Technol. Lett., Vol. 61, No. 1, 275-279, Nov. 2019.
doi:10.1109/TAP.2009.2013449

10. Abbosh, A. M. and M. E. Bialkowski, "Design of UWB planar band-notched antenna using parasitic elements," IEEE Trans. Antennas Propag., Vol. 57, No. 3, 796-799, Mar. 2009.
doi:10.1109/TAP.2009.2027727

11. Ryu, K. S. and A. A. Kishk, "UWB antenna with single or dual band-notches for lowerWLAN band and upper WLAN band," IEEE Trans. Antennas Propag., Vol. 57, No. 12, 3942-3950, Dec. 2009.
doi:10.1049/el.2015.3889

12. Chandel, R. and A. K. Gautam, "Compact MIMO/diversity slot antenna for UWB applications with band-notched characteristic," Electron. Lett., Vol. 52, No. 5, 336-338, Mar. 2016.
doi:10.1049/el.2017.4528

13. Hosseini, H., H. R. Hassani, and M. H. Amini, "Miniaturised multiple notched omnidirectional UWB monopole antenna," Electron. Lett., Vol. 54, No. 8, 472-474, Apr. 2018.
doi:10.1109/LAWP.2011.2167649

14. Almalkawi, M. and V. Devabhaktuni, "Ultrawideband antenna with triple band-notched characteristics using closed-loop ring resonators," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 959-962, 2011.
doi:10.1109/TAP.2014.2327124

15. Siddiqui, J. Y., C. Saha, and Y. M. M. Antar, "Compact SRR loaded UWB circular monopole antenna with frequency notch characteristics," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 4015-4020, Aug. 2014.
doi:10.1109/LAWP.2011.2116150

16. Yazdi, M. and N. Komjani, "Design of a band-notched UWB monopole antenna by means of an EBG structure," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 170-173, 2011.
doi:10.1109/TMTT.2011.2114090

17. Peng, L. and C. L. Ruan, "UWB band-notched monopole antenna design using electromagnetic-bandgap structures," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 4, 1074-1081, Apr. 2011.
doi:10.1049/el.2012.0972

18. Li, T., H.-Q. Zhai, G.-H. Li, and C.-H. Liang, "Design of compact UWB band-notched antenna by means of electromagnetic-bandgap structures," Electron. Lett., Vol. 48, No. 11, 608-609, May 2012.
doi:10.1002/mop.26672

19. Yang, Y., Y. Yin, A. Sun, and S. Jing, "Design of a UWB wide-slot antenna with 5.2/5.8-GHz dual notched bands using modified electromagnetic band-gap structures," Microw. Opt. Technol. Lett., Vol. 54, No. 4, 1069-1075, Apr. 2012.

20. Jaglan, N., B. K. Kanaujia, S. D. Gupta, and S. Srivastava, "Dual band notched EBG structure based UWB MIMO/diversity antenna with reduced wide band electromagnetic coupling," Frequenz, Vol. 71, No. 11–12, 555-565, 2017.
doi:10.1007/s11276-016-1343-7

21. Jaglan, N., S. D. Gupta, B. K. Kanaujia, and S. Srivastava, "Band notched UWB circular monopole antenna with inductance enhanced modified mushroom EBG structure," Wireless Netw., Vol. 24, No. 2, 383-393, Feb. 2018.
doi:10.1016/j.aeue.2018.09.014

22. Peddakrishna, S. and T. Khan, "Design of UWB monopole antenna with dual notched band characteristics by using π-shaped slot and EBG resonator," AEU --- Intl. J. Electron. Commun., Vol. 96, 107-112, 2018.
doi:10.1049/iet-map.2018.5676

23. Ghosh, A., G. Sen, M. Kumar, and S. Das, "Design of UWB antenna integrated with dual GSM functionalities and dual notches in the UWB region using single branched EBG inspired structure," IET Microw. Antennas Propag., Vol. 13, No. 10, 1564-1571, Aug. 2019.
doi:10.1049/iet-map.2018.5674

24. Ghahremani, M., C. Ghobadi, J. Nourinia, M. S. Ellis, F. Alizadeh, and B. Mohammadi, "Miniaturised UWB antenna with dual-band rejection of WLAN/WiMAX using slitted EBG structure," IET Microw. Antennas Propag., Vol. 13, No. 3, 360-366, Feb. 2019.
doi:10.2528/PIERC19040908

25. Trimukhe, M. A. and B. G. Hogade, "Compact ultra-wideband antenna with triple band notch characteristics using EBG structures," Progress In Electromagnetics Research C, Vol. 93, 65-77, 2019.
doi:10.1109/LMWC.2017.2690822

26. Bhavarthe, P. P., S. S. Rathod, and K. T. V. Reddy, "A compact two via slot-type electromagnetic bandgap structure," IEEE Microw. Wirel. Components Lett., Vol. 27, No. 5, 446-448, May 2017.
doi:10.1109/TAP.2003.817983

27. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with Electromagnetic Bandgap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, Oct. 2003.
doi:10.1109/22.798001

28. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2059-2074, Nov. 1999.