1. Elsheakh, D. M. N., H. A. Elsadek, E. A. Abdallah, M. F. Iskander, and H. M. S. El- Hennawy, "Reconfigurable single and multiband inset feed microstrip patch antenna for wireless communication devices," Progress In Electromagnetic Research C, Vol. 12, 191-201, 2010.
2. Bakariya, P. S., S. Dwari, M. Sarkar, and M. K. Mandal, "Proximity-coupled microstrip antenna for Bluetooth, WiMAX and WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 755-758, 2015.
3. Wu, R. Z., P. Wang, Q. Zheng, and R. P. Li, "Compact CPW-fed triple band antenna for diversity applications," Electron. Letters, Vol. 51, 735-736, 2015.
4. Mehdipour, A., A. R. Sebak, C. W. Trueman, and T. A. Denidni, "Compact multiband planar antenna for 2.4/3.5/5.2/5.8-GHz wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 144-147, 2012.
5. Cao, Y. F., S. W. Cheung, and T. I. Yuk, "A multiband slot antenna for GPS/WiMAX/WLAN systems," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 3, 952-958, 2015.
6. Saraswat, R. K. and M. Kumar, "A frequency band reconfigurable UWB antenna for high gain applications," Progress In Electromagnetics Research B, Vol. 64, 29-45, 2015.
7. Samsuzzaman, M., T. Islam, N. H. Abd Rahman, M. R. I. Faruque, and J. S. Mandeep, "Compact modified Swastika shape patch antenna for WLAN/WiMAX applications," International Journal of Antennas and Propagation, Vol. 2014, 1-8, 2014.
8. Ali, T., S. Pathan, and R. C. Biradar, "A multiband antenna loaded with metamaterial and slots for GPS/WLAN/WiMAX applications," Microwave and Optical Technology Letters, Vol. 60, 79-85, 2018.
9. Chaurasia, P., B. K. Kanaujia, S. Dwari, and M. K. Khandelwal, "Design and analysis of sevenbands- slot-antenna with small frequency ratio for different wireless applications," Int. J. Electron. and Commun. (AEU), Vol. 99, 100-109, 2018.
10. Zhu, J. and G. V. Eleftheriades, "Dual band metamaterial inspired small monopole antenna for WiFi applications," Electron. Letters, Vol. 45, No. 22, 1104-1106, 2009.
11. Xu, H.-X., G.-M. Wang, Y.-Y. Lv, M.-Q. Qi, X. Gao, and S. Ge, "Multifrequency monopole antennas by loading metamaterial transmission lines with dual-shunt branch circuit," Progress In Electromagnetics Research, Vol. 137, 703-725, 2013.
12. Alam, T., M. Samsuzzaman, M. R. I. Faruque, and M. T. Islam, "A metamaterial unit cell inspired antenna for mobile wireless applications," Microwave and Optical Technology Letters, Vol. 58, No. 2, 263-267, 2016.
13. Daniel, S., R. Pandeeswari, and S. Raghavan, "A compact metamaterial loaded monopole antenna with offset-fed microstrip line for wireless applications," Int. J. Electron. and Commun. (AEU), Vol. 83, 88-94, 2017.
14. Rao, M. V., B. T. P. Madhav, T. Anilkumar, and B. P. Nadh, "Metamaterial inspired quad band circularly polarized antenna for WLAN/ISM/Bluetooth/WiMAX and satellite communication applications," Int. J. Electron. and Commun. (AEU), Vol. 97, 229-241, 2018.
15. Anguera, J., C. Puente, C. Borja, and J. Soler, "Fractal shaped antennas: A review," Encyclopedia of RF and Microwave Engineering, Wiley Interscience, 2005.
16. Chen, H. D., H. W. Yang, and C. Y. D. Sim, "Single open-slot antenna for LTE/WWAN smartphone application," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 8, 4278-4282, 2017.
17. Lee, S. H., Y. Lim, Y. J. Yoon, C. B. Hong, and H. I. Kim, "Multiband folded slot antenna with reduced hand effect for handsets," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 674-677, 2010.
18. Yuan, B., Y. Cao, and G. Wang, "A miniaturized printed slot antenna for six-band operation of mobile handsets," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 854-857, 2011.
19. Sharma, S. K., J. D. Mulchandani, D. Gupta, and R. K. Chaudhary, "Triple band metamaterial inspired antenna using FDTD technique for WLAN/WiMAX applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 25, No. 8, 688-695, 2015.
20. Ali, T. and R. C. Biradar, "A compact multiband antenna using λ/4 rectangular stub loaded with metamaterial for IEEE 802.11 N and IEEE 802.16 E," Microave and Optical Technology Letters, Vol. 59, No. 5, 1000-1006, 2017.
21. Kukreja, J., D. Kumar Choudhary, and R. Kumar Chaudhary, "CPW fed miniaturized dual-band short-ended metamaterial antenna using modified split-ring resonator for wireless application," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 27, No. 8, 1-7, 2017.
22. Saraswat, R. K. and M. Kumar, "A metamaterial hepta-band antenna for wireless applications with specific absorption rate reduction," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 10, 1-12, 2019.
23. Ali, T., A. M. Saadh, and R. C. Biradar, "A fractal quad-band antenna loaded with L-shaped slot and metamaterial for wireless applications," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 7, 826-834, 2018.
24. Pandeeswari, R. and S. Raghavan, "Broadband monopole antenna with split ring resonator loaded substrate for good impedance matching," Microwave and Optical Technology Letters, Vol. 56, No. 10, 2388-2392, 2014.
25. Arora, C., S. S. Pattnaik, and R. N. Baral, "SRR inspired microstrip patch antenna array," Progress In Electromagnetics Research C, Vol. 58, 89-96, 2015.
26. Rajeshkumar, V. and S. Raghavan, "SRR based polygon ring penta-band fractal antenna for GSM/WLAN/WiMAX/ITU band applications," Microwave and Optical Technology Letters, Vol. 57, No. 6, 1301-1305, 2015.
27. Elavarasi, C. and T. Shanmuganantham, "Multiband SRR loaded Koch star fractal antenna," Alexandria Engg. J., Vol. 57, No. 3, 1549-1555, 2018.
28. Ahmed, B.-H. and Nrnikman, "Fractal microstrip antenna with Minkowski island split ring resonator for broad band application," IEEE Int. RF and Micro. Conf., 2013, doi.org/10.1109/RFM.2013.6757252.
29. Hu, J.-R. and J.-S. Li, "Compact microstrip antennas using SRR structure ground plane," Microwave and Optical Technology Letters, Vol. 56, No. 1, 117-120, 2014.
30. Rajkumar, R. and K. Usha Kiran, "A metamaterial inspired compact open split ring resonator antenna for multiband operation," Wireless Personal Communications, Vol. 97, 951-965, 2017.
31. Rajeshkumar, V. and S. Raghavan, "A compact metamaterial inspired triple band antenna for reconfigurable WLAN/WiMAX applications," Int. J. Electron. Commun., Vol. 69, No. 1, 274-280, 2015.
32. Saraswat, R. K. and M. Kumar, "Miniaturized slotted ground UWB antenna loaded with metamaterial for WLAN and WiMAX applications," Progress In Electromagnetics Research B, Vol. 65, 65-80, 2016.
33. Saraswat, R. K. and M. Kumar, "A vertex-fed hexa-band frequency reconfigurable antenna for wireless applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 10, 1-13, 2019.
34. Liu, W. C., C. M. Wu, and Y. Dai, "Design of triple-frequency microstrip-fed monopole antenna using defected ground structure," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, 2457-2463, 2011.
35. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley Inter Science, 2005.
36. Naqvi, A., M. S. Khan, and B. D. Braaten, "A frequency reconfigurable cylindrically shaped surface with cloaking-like properties," Microwave and Optical Technology Letters, Vol. 58, No. 6, 1323-1329, 2016.
37. Naqvi, S. A. and M. S. Khan, "Design of a miniaturized frequency reconfigurable antenna for rectenna in WiMAX and ISM frequency bands," Microwave and Optical Technology Letters, Vol. 60, No. 2, 325-330, 2018.
38., Computer simulation technology microwave studio (CST MWS), Retrieved from http://www.cst.co.
39. Alpha Industries, , ALPHA-6355 beamlead PIN diode, Data sheet 2014 [Online], Available: http://www.datasheetarchive.com/ALPHA/PINdiode6355-datasheet.html.
40. Kumar, Y. and S. Singh, "A compact multiband hybrid fractal antenna for multistandard mobile wireless application," Wireless Personal Communications, Vol. 84, 57-67, 2015.
41. Chen, H., J. Zhang, Y. Bai, Y. Luo, L. Ran, Q. Jiang, et al. "Experimental retrieval of the effective parameters of metamaterials based on a waveguide method," Opt. Express, Vol. 14, No. 26, 12944-12949, 2006.
42. Saha, C. and J. Y. Siddiqui, "Versatile CAD formulation for estimation of the resonant frequency and magnetic polarizability of circular split ring resonators," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 21, 432-438, 2011.
43. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104-195109, 2002.
44. Saha, C. and J. Y. Siddiqui, "Versatile CAD formulation for estimation of the resonant frequency and magnetic polarizability of circular split ring resonators," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 21, 432-438, 2011.
45. Dwivedi, S. K., M. Kumar, and L. Tharani, "A rectangular SRR switched slotted microstrip patch for frequency diversity application," Wireless Personal Communications, Vol. 103, No. 4, 2863-2875, 2018.